B. Tech. Degree III Semester Examination, December 2006

IT/CS 303 DISCRETE MATHEMATICAL STRUCTURES

(1999 Admissions onwards)

Time: 3 Hours Maximum Marks: 100 I Define the characteristic function f_A of a subset A of the universal set U. Show that $f_{AUB} = f_A + f_B - f_A f_B$. (5) Construct truth tables to determine whether following statement is a tautology, b) a contingency or an absurdity $q \vee (\sim q \wedge q)$ (i) $q \Rightarrow (q \Rightarrow p)$ (ii) (5) (10)

Let A_1, A_2, \ldots, A_n be n sets. Show by mathematical induction that $\left(\bigcup_{i=1}^{\bar{n}} A_i i\right) = \bigcap_{i=1}^{n} \overline{A_i}$

- II How many 'words' of three distinct letters can be formed from the letters of the a) (5) word MAST?
 - How many different seven person committees can be formed each containing three b) women from an available set of 20 women and four men from an available set of
 - A die is tossed three times and the resulting sequence of numbers is recorded. c) What is the probability of the event E that either all three numbers are equal or none of them is 4? (10)
- Let $A = \{4, 6, 8, 10\}$ and $R = \{(4, 4), (4, 10), (6, 6), (6, 8), (8, 10)\}$ is a Ш a) (10)relation on A. Determine transitive closure of R. Determine whether the relation whose b) digraph is as follows is an equivalence relation:

If R and S equivalence relations on a set show that $R \cap S$ is also an equivalence c) relation. (5)

- Let $A = \{1, 2, 3, 4\}$ and $R = \{(2,1), (2,3), (3,2), (3,3), (2,2), (4,2)\}$. Find RoR. IV (10)
 - Find all partitions of $S = \{1, 2, 3\}$. (10)
- Use Fleury's algorithm to construct an Euler circuit for the following graph.

(Turn Over)

(10)

(5)

Define Hamiltonian circuit. Find a Hamiltonian circuit for the graph given below:

(10)

OR

VI Explain Prim's algorithm for finding a minimal spanning tree. Use this algorithm a) to find a minimal spanning tree for:

(10)

b) Define chromatic number of a graph G. Show that every tree with two or more vertices is 2-chromatic.

(10)

VII a) Define a semi group. Let A be a non empty set, explain what is the free semi group F_A generated by A. Is F_A a monoid? (10)

Let $A = \{a, b\}$. Does the following table define a semi group? **b**)

(10)

OR

Show that the set of all permutations of three elements $\{x_1, x_2, x_3\}$ under the VIII a) operation of composition is a group.

(10)

Let G and G' be two groups. Define a homomorphism $f: G \to G'$. What is b) the kernel of f?

(10)

IX Show that D₆ the set of all positive divisors of 6 and P(s) where $S = \{a, b\}$, the set of all subsets of S are lattices. Are they isomorphic? (20)

Let L be a lattice. Then prove the following:

 $a \lor a = a$ (i)

 \mathbf{X}

(ii)
$$a \lor (b \lor c) = (a \lor b) \lor c$$

(iii)
$$a \lor (a \land b) = a$$
 (20)