

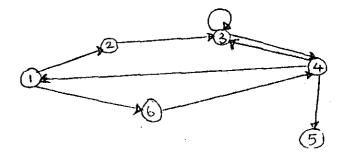
Code No. BTS 003(A)

B.Tech. Degree III Semester Examination in Information Technology/ Computer Science and Engineering, January 2001

W

IT/CS 303 DISCRETE MATHEMATICAL STRUCTURES

Time: 3 Hours


Max. Marks: 100

(All questions carry equal marks)

- I a) If A = {a, b, c, d} and B = {a, c, e, f, g}, what is their symmetric difference? Represent the symmetric difference of A and B by Venn diagram.
 - b) Prove that $\sim (p \leftrightarrow q) \equiv ((p \land \sim q) \lor (q \land \sim p))$

OR

- II a) Give the negation of the following statements. (1) p: 2+3>1 (2) q: it is cold. Also make a truth table of $p \wedge q$
 - b) Let n be an integer. Prove that if n² is odd, then n is odd.
- III a) Let R be the relation whose digraph is given below. Find a cycle starting at vertex 2. Draw the digraph of R^2 . Compute M_R^2 .

OR

(P.T.O)

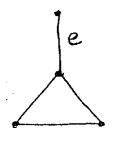
- IV a) Let A = {a, b, c, d, e} and R be the symmetric relation given by R = {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (b, e), (e, b), (e, d), (d, e), (c, d), (d, c)}.

 Draw the digraph of R.
 - b) Let A = Z and $R = \left\{ (a,b) \in A \times A \middle| a \equiv r(\text{mod}_2) \text{ and } b \equiv r(\text{mod}_2) \right\}$ show that congruence mod 2 is an equivalence relation.

Use Fleury's algorithm to construct an Euler circuit for the

B F G

following graph.


D

٧

VI

OR

For the graph G shown below, compute $P_G(x)$ and hence find X(g).

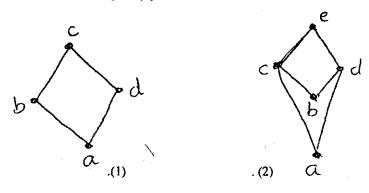
Contd...3

Let $A = \{a, b\}$. Which of the following tables define a semi group on A? Which define a monoid on A?

(i) *	a	b	(ii) *	а	b	(iii)_*	a	b	(iv)	*	a	b
a	a	b	a	a	b	a	b	a	_	a	a	<u>а</u>
	а			b			а				b	

VIII a) Define Abelian group; given an example to it.

b) Let G be a group and a and b be elements of G.
 Then show that the equation ax = b has a unique solution in G.


IX Let $S = \{a, b, c\}$ and A = P(S). Draw the Hasse diagram of the poset A with partial order \subseteq (set inclusion).

OR

X a) Define a lattice.

VII

b) Determine whether the following diagrams (1 & 2) represent a lattice; justify your answer.

