[This question paper contains 6 printed pages]

5222 Your Roll No

B.Sc./I

J

MATHO-PHYSICS

MP-201 Mathematics - I

(NC - Admissions of 2008 & onwards)

Time 3 hours

Maximum Marks 1

112

(Write your Roll No on the top immediately on receipt of this question paper)

1 Attempt six questions in all, taking two from Section I, three from Section II and one from Section III.

SECTION - I

Attempt any two questions from this section

1 (a) Sketch the following hyperbola and label the vertices, foci and asymptotes

$$x^2 - 4y^2 + 2x + 8y - 7 = 0 (7)$$

(b) Find an equation of the ellipse for which length of major axis is 26 and foci at (±5, 0)

Also sketch the ellipse

(7)

PTO

(c) Determine whether \overrightarrow{u} and \overrightarrow{v} make an acute angle, an obtuse angle, or are orthogonal, where

2

$$\vec{u} = \hat{i} - 2\hat{i} + 2\hat{k}, \ \vec{v} = 2\hat{i} + 7\hat{j} + 6\hat{k}$$
 (5)

2 (a) Find two unit vectors that are orthogonal to both

$$\vec{u} = -7\hat{i} + 3\hat{j} + \hat{k}$$
and
$$\vec{v} = 2\hat{i} + 4\hat{k}$$
 (6)

(b) If
$$\vec{A} = (2x^2y - x^4)\hat{i} + (e^{xy} - y\sin x)\hat{j} + (x^2\cos y)\hat{k}$$
,

find
$$\frac{\partial^2 \vec{A}}{\partial x^2}$$
, $\frac{\partial^2 \vec{A}}{\partial x \partial y}$, $\frac{\partial^2 \vec{A}}{\partial y^2}$ (6)

(c) Find
$$\nabla \phi$$
 if $\phi = \ln ||\vec{r}||$,
where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ (7)

3 (a) Find, by vector method, the area of the triangle determined by the points

$$P_1(2, 2, 0), P_2(-1, 0, 2) \text{ and } P_3(0, 4, 3)$$
 (6)

- (b) Prove that curlgrad $\phi = 0$, for any scalar function ϕ in x, y, z (6)
- (c) (1) Determine the constant a so that the vector $\overrightarrow{V} = (x + 3y)\hat{i} + (y 2z)\hat{j} + (x + az)\hat{k}$ is solenoidal

(11) If
$$\vec{A} = xz^3 \hat{i} - 2x^3yz\hat{j} + 2yz^4 \hat{k}$$
, find $\nabla \times \vec{A}$ at the point $(1, -1, 1)$ (3,4)

SECTION - II

Attempt all the three questions in this section

4 (a) Find the asymptotes of the curve

$$x^3 + x^2y - xy^2 - y^3 + 2xy + 2y^2 - 3x + y = 0$$
 (8)

(b) Trace the curve

$$9ay^2 = x(x - 3a)^2 (10)$$

OR

(a) Find the position and nature of the double points of the curve

$$x^3 + 2x^2 + 2xy - y^2 + 5x - 2y = 0$$
 (8)

(b) Trace the curve

$$y(x^2 + 4a^2) = 8a^3 (10)$$

5 (a) Evaluate

$$\int \frac{1}{(x+1)\sqrt{2x^2+3x+4}} \, dx \tag{8}$$

PTO

(b) Show that the length of the curve $y = log \frac{e^x - 1}{e^x + 1}$

4

from
$$x = 1$$
 to $x = 2$ is $log\left(e + \frac{1}{e}\right)$ (8)

OR

(a) Evaluate
$$\int \frac{1}{(2x^2 + 3)\sqrt{3x^2 - 4}} dx$$
 (8)

- (b) Find the volume formed by the revolution of the loop of the curve $y^2(a + x) = x^2(a x)$ about x-axis (8)
- 6 (a) Examine the continuity at x = 0, the function f defined by

$$f(x) = \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}}, \text{ if } x \neq 0$$

$$f(0) = 1 \tag{6}$$

- (b) State and prove Rolle's Theorem (8)
- (c) (i) Verify Lagrange's Mean Value Theorem for f(x) = x(x-1)(x-2) in $[0, \frac{1}{2}]$
 - (11) Show that the function

$$f(\lambda) = 2 - 3x + 6x^2 - 4x^3$$
 is strictly decreasing
in every interval (5+5)

OR

(a) Show that the function f defined by

$$f(x) = \frac{1}{x}, 1 < x < 2,$$

is uniformly continuous

(8)

- (b) Show that $\frac{x}{1+x} < \log(1+x) < x \ \forall \ x > 0$ (8)
- (c) Show that differentiability implies continuity

 Give an example to show that the converse is not true

 (8)

SECTION - III

Attempt one question from this section

7 (a) Solve the equation

$$x^4 - 8x^3 + 14x^2 + 8x - 15 = 0$$

the roots being in A P (5)

(b) If α , β , γ are the roots of the equation,

$$x^3 + px + q = 0,$$

then show that

$$\left(\frac{\alpha^7 + \beta^7 + \gamma^7}{7}\right) = \left(\frac{\alpha^2 + \beta^2 + \gamma^2}{2}\right) \left(\frac{\alpha^5 + \beta^5 + \gamma^5}{5}\right)$$
(6)

PTO

6

(c) If α , β , γ are the roots of the equation,

$$ax^3 + bx^2 + cx + d = 0$$
,

form an equation whose roots are α^3 , β^3 , γ^3 (5)

8 (a) Prove that

$$32 \sin^4\theta \cos^2\theta = \cos 6\theta - 2 \cos 4\theta - \cos 2\theta + 2$$
(5)

(b) Find sum of the series

$$\cos\theta \sin\theta + \cos^2\theta \sin 2\theta + \cos^n\theta \sin n\theta$$
 (6)

(c) Show that a necessary condition that the points A, B, C representing Z_1 , Z_2 , Z_3 respectively on Argand plane to be vertices of an equilateral triangle is that

$$\frac{1}{Z_2 - Z_3} + \frac{1}{Z_3 - Z_1} + \frac{1}{Z_1 - Z_2} = 0 \tag{5}$$