DECEMBER 2006

Code: D-23 / DC-23 **Subject: MATHEMATICS - II Time: 3 Hours** Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following:

(2x10)

- The smallest positive integer n for which $\left(\frac{1+i}{1-i}\right)^n = 1$ is
 - (A) 8

(B) 12

(C) 16

- (D) None of these
- b. A square root of 3 + 4i is
 - (A) $\sqrt{3} + i$

(B) 2-i

(C) 2+i

- (D) None of these
- c. Any vector a is equal to
 - (A) $(a \cdot \hat{i}) + (a \cdot \hat{j})\hat{j} + (a \cdot \hat{k})\hat{k}$ (B) $(a \cdot \hat{i})\hat{i} + (a \cdot \hat{k})\hat{j} + (a \cdot \hat{i})\hat{k}$ (C) $(a \cdot \hat{k})\hat{i} + (a \cdot \hat{i})\hat{j} + (a \cdot \hat{i})\hat{k}$ (D) $(a \cdot a)(\hat{i} + \hat{j} + \hat{k})$
- d. If a and b are two unit vectors inclined at an angle \square and are such that a + b is a unit vector, then @is equal to
 - (A) $\pi/4$

(B) $\pi/3$

(C) $\pi/2$

(D) $2\pi/3$

- e. The value of the determinant , where ω is an imaginary cube root of unity is
 - (A) $(1-\omega)^2$

(B) 3

(C) = 3

(D) 4

The value of the determine
$$\begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix}$$
 is equal to

- - **(A)** -4

(B) 0

(C) 1

- **(D)** 4
- g. The inverse of a diagonal matrix is
 - (A) not defined

- **(B)** a skew-symmetric matrix
- (C) a diagonal matrix
- **(D)** a unit matrix
- h. The period of function $\sin 2x + \cot 3x + \sec 5x$ is
 - (A) T

(B) 2π

(C) $\pi/2$

- (D) $\pi/3$
- The Laplace transform of sin 2 t is
 - $(A) \ \overline{s(s^2+4)}$

- (B) $\frac{1}{s(s^2+4)}$ (D) $\frac{1}{(s+4)(s-2)}$
- The solution of the differential equation $\mathbb{D}^2 + 4 = e^x$ is
 - (A) $c_1 \cos 2x c_2 \sin 2x + \frac{e^x}{4}$ (B) $c_1 \cos 2x + c_2 \sin 2x + \frac{e^x}{4}$ (C) $c_1 \cos 2x + c_2 \sin 2x + \frac{e^x}{5}$ (D) $c_1 \cos 4x c_2 \sin 4x + \frac{e^x}{5}$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- a. If n is a positive integer, prove that $(\sqrt{3} + i)^n + (\sqrt{3} i)^n = 2^{n+1} \cos \frac{n\pi}{\kappa}$ **Q.2** (8)
 - b. Find all the values of $\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{3/4}$ and show that the product of all these values is 1. (8)

Q.3 a. If the roots of $z^3 + iz^2 + 2i = 0$ represent vertices of a triangle in the Argand plane, then find area of the triangle. (8)

b. Find the value of
$$(\vec{a} \times \vec{b}) \times \vec{c}$$
 if
$$\vec{a} = 3\hat{i} - \hat{j} + 2\hat{k}, \vec{b} = 2\hat{i} + \hat{j} - \hat{k}, \vec{c} = \hat{i} - 2\hat{j} + 2\hat{k}.$$
 (8)

- Q.4 a. Prove that the sum of all the vectors drawn from the centre of a regular octagon to its vertices is the zero vector. (8)
 - b. Find the moment about the point M(-2,4,-6) of the force represented in magnitude and position by \overrightarrow{AB} , where the point A and B have the co-ordinates (1,2,-3) and (3,-4,2) respectively. (8)

Q.5 a. Show that
$$\begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ac & bc & c^2 + 1 \end{vmatrix} = 1 + a^2 + b^2 + c^2$$
(8)

b. Write the following system of equations in the matrix form AX = B and solve this for X by finding A^{-1} .

$$2x_1 - x_2 + x_3 = 4$$

$$x_1 + x_2 + x_3 = 1$$

$$x_1 - 3x_2 - 2x_3 = 2$$
(8)

Q.6 a. Using matrix methods, find the values of \mathbb{A} and \mathbb{A} so that the system of equations

$$2x + 3y + 5z = 9$$

 $7x + 3y - 2z = 8$
 $2x + 3y - \lambda z = \mu$.

has (i) unique solution and (ii) has no solution (8)

b. Verify Cayley Hamilton theorem for the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}.$$

Use Caley Hamilton theorem to evaluate A^{-1} and hence solve the equations x + 2y = 3 3x + y = 4 (8)

Q.7 Find the Fourier series for the functions

$$f(x) = \frac{1}{4}(\pi - x)^2, \ 0 < x < 2\pi$$
 (16)

Code: A-20 Page 4 of 4

Q.8 a. Find the Laplace transform L (te at sin at) (8)

b. Find the inverse Laplace transform
$$L^{-1}\left\{\frac{2s+1}{(s+1)(s^2+1)}\right\}$$
 (8)

- - b. By using Laplace transform, solve the differential equation $\frac{d^2y}{dt^2} + 9y = \cos 2t, \text{ with initial conditions } y(0) = 1, y(\frac{\pi}{2}) = -1$ (8)