Math Bank-4

- If $\sin \theta + \cos \theta = m$ and $\sec \theta + \csc \theta = n$, then 1. (a) $2n = m (n^2 - 1)$ (b) $2m = n (m^2 - 1)$ (c) $2n = m (m^2 - 1)$ (d) none of these If in a $\triangle ABC$, $\cos A = \frac{\sin B}{2\sin C}$, then it is 2. (a) an isosceles triangle (b) an equilateral triangle (c) a right angled triangle (d) none of these If $\cos 2B = \frac{\cos (A+C)}{\cos (A-C)}$, then $\tan A$, $\tan B$, $\tan C$ are 3. in (b) G.P. (a) A.P. (c) H.P. (d) none of these If $n = \frac{\pi}{4\alpha}$, then $\tan \alpha \cdot \tan 2\alpha \cdot \tan 3\alpha \dots \tan (2n-1) \alpha$ 4. is equal to (a) 1 (b) - 1 (c) ∞ (d) none of these 5. If $\sin(\pi \cos \theta) = \cos(\pi \sin \theta)$, then the value of $\cos\left(\theta + \frac{\pi}{4}\right)$ is (a) $\frac{2}{\sqrt{2}}$ (b) $\frac{1}{\sqrt{2}}$ (c) $-\frac{1}{2\sqrt{2}}$ (d) $\frac{1}{2\sqrt{2}}$
- 6. If $\cos \alpha + \cos \beta = 0 = \sin \alpha + \sin \beta$, then $\cos 2\alpha + \cos 2\beta$ =
 - (a) $-2\sin(\alpha + \beta)$ (b) $-2\cos(\alpha + \beta)$ (c) $2\sin(\alpha + \beta)$ (d) $2\cos(\alpha + \beta)$
- 7. $\cos \frac{\pi}{7} \cos \frac{2\pi}{7} \cos \frac{4\pi}{7} =$ (a) 0 (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) $-\frac{1}{8}$
- 8. The smallest positive angle which satisfies the equation $2 \sin^2 \theta + \sqrt{3} \cos \theta + 1 = 0$ is
 - (a) $\frac{5\pi}{6}$ (b) $\frac{2\pi}{3}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{6}$
- 9. Let α , β be any two positive values of x for which 2 cos x, $|\cos x|$ and $1-3 \cos^2 x$ are in G.P. The

minimum value of $|\alpha - \beta|$ is

- (a) $\pi/3$ (b) $\pi/4$ (b) $\pi/2$ (d) none of these
- **10.** The general solution of $\sin^2 \theta \sec \theta + \sqrt{3} \tan \theta = 0$ is

(a)
$$\theta = n\pi + (-1)^{n+1} \frac{\pi}{3}, \theta = n\pi, n \in \mathbb{Z}$$

(b) $\theta = n\pi, n \in \mathbb{Z}$

(b)
$$\theta = n\pi + (-1)^{n+1} \frac{\pi}{3}, n \in \mathbb{Z}$$

(d) $\theta = \frac{n\pi}{2}, n \in \mathbb{Z}$

11. The equation $a \sin x + \cos 2x = 2a - 7$ possesses a solution if

(a)
$$a > 6$$
 (b) $2 \le a \le 6$

- **12.** $\csc^{-1} (\cos x)$ is real if (a) $x \in [-1, 1]$ (b) $x \in \mathbb{R}$
 - (c) x is an odd multiple of $\frac{\pi}{2}$
 - (d) x is an integral multipe of π
- 13. α , β are γ are three angles given by

$$\alpha = 2 \tan^{-1} \left(\sqrt{2} - 1 \right), \beta = 3 \sin^{-1} \frac{1}{\sqrt{2}} + \sin^{-1} \left(-\frac{1}{2} \right)$$

and $\gamma = \cos^{-1} \frac{1}{3}$. Then
(a) $\alpha > \beta$ (b) $\beta > \gamma > \alpha$
(c) $\alpha > \gamma$ (d) none of these
14. The value of $\cos(2 \cos^{-1} 0.8)$ is
(a) 0.48 (b) 0.96
(c) 0.6 (d) 0.28
15. In a $\triangle ABC$, $2ac \sin \frac{1}{2} (A - B + C) =$
(a) $a^2 + b^2 - c^2$ (b) $c^2 + a^2 - b^2$
(c) $b^2 - c^2 - a^2$ (d) $c^2 - a^2 - b^2$
16. In any $\triangle ABC$, $\frac{2abc}{a+b+c} \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} =$
(a) \triangle (b) 2Δ
(c) 3Δ (d) none of these
17. Let the angles A, B, C of $\triangle ABC$ be in A.P. and let $b : c = \sqrt{3} : \sqrt{2}$. Then angle A is
(a) 75° (b) 45°
(c) 60° (d) none of these

18. If the angles A and B of a $\triangle ABC$ satisfy the equation $\sin A + \sin B = \sqrt{3} (\cos B - \cos A)$, then they

differ by

(a)
$$\frac{\pi}{6}$$
 (b) $\frac{\pi}{3}$
(c) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$

- **19.** A man of height 6 ft. observes the top of a tower and the foot of the tower at angles of 45° and 30° of elevation and depression respectively. The height of the tower is
 - (a) $(1 + \sqrt{3})m$ (b) $3(1 + \sqrt{3})m$

(c) $6(1 + \sqrt{3})m$ (d) none of these

20. Two vertical poles 20 m and 80 m high stand apart on a horizontal plane. The height of the point of intersection of the lines joining the top of each pole to the foot of the other is

(a)	15 m	(b)	16 m
(c)	18 m	(d)	50 m

21. A vertical tree stands at a point A on a bank of canal. The angle of elevation of its top from a point B on the other bank at the canal and directly opposite to A is 60°. The angle of elevation of the top from another point C is 30°. If A, B and C are on the same horizontal plane, $\angle ABC = 120^\circ$ and BC = 20 m, the height of the tree is

(a)
$$\frac{5}{4}(\sqrt{3} + 3\sqrt{11})$$
 (b) $\frac{5}{4}(\sqrt{3} - 3\sqrt{11})$
(c) $\frac{5}{4}(1 + \sqrt{33})$ (d) $\frac{5}{4}(1 - \sqrt{33})$

- 22. The angle of elevation of a stationary cloud from a point 2500 m above a lake is 15° and the angle of depression of its reflection in the lake is 45° . The height of cloud above the lake level is
 - (a) $2500\sqrt{3}$ metres (b) 2500 metres
 - (c) $500\sqrt{3}$ metres (d) none of these

23. If α , β , γ are the real roots of the equation $x^3 - 3px^2 + 3qx - 1 = 0$, then the centroid of the triangle having vertices $\left(\alpha, \frac{1}{\alpha}\right)$, $\left(\beta, \frac{1}{\beta}\right)$ and $\left(\gamma, \frac{1}{\gamma}\right)$ are (a) (p, q) (b) (p, -q)

- (c) (-p, q) (d) (-p, -q)
- 24. A rectangle has two opposite vertices at the points (1, 2) and (5, 5). If the other vertices lie on the line x = 3, then the coordinates of the other vertices are (a) (3, -1), (3, -6) (b) (3, 1), (3, 5) (c) (3, 2), (3, 6) (d) (3, 1), (3, 6)

- **25.** Without changing the direction of coordinates axes, origin is transferred to (α, β) so that the linear terms in the equation $x^2 + y^2 + 2x 4y + 6 = 0$ are eliminated. The point (α, β) is
 - (a) (-1, 2) (b) (1, -2)(c) (1, 2) (d) (-1, -2)
- **26.** A square is constructed on the portion of the line x + y = 5 which is intercepted between the axes, on the side of the line away from origin. The equations to the diagonals of the square are (a) x = 5, y = -5 (b) x = 5, y = 5
 - (c) x = -5, y = 5 (d) x y = 5, x y = -5
- 27. The centroid of the triangle formed by the pair of lines $2x^2 27y^2 3xy + 4x 3y + 2 = 0$ and the line 4x 3y 26 = 0 is
 - (a) (3, -2) (b) (4, 2)
 - (c) (4, 0) (d) none of these
- **28.** The three lines whose combined equation is $(3x^2 + 2xy 3y^2)(x y + 2) = 0$ form a triangle which is (a) equilateral (b) right angled
 - (c) obtuse angled (d) none of these
- 29. If the angle between the two lines represented by $2x^2 + 5xy + 3y^2 + 6x + 7y + 4 = 0$ is $\tan^{-1} m$, then m = 1

(a)
$$\frac{1}{5}$$
 (b) 1
(c) $\frac{7}{5}$ (d) 7

30. The length of intercept made by the line lx + my + n = 0between the pair of lines $ax^2 + 2hxy + by^2 = 0$ is

(a)
$$\frac{n^{2}(l^{2} + m^{2})\sqrt{h^{2} - ab}}{am^{2} - 2hlm + bl^{2}}$$

(b)
$$\frac{n\sqrt{(l^{2} + m^{2})(h^{2} - ab)}}{2(am^{2} - 2hlm + bl^{2})}$$

(c)
$$\frac{2n\sqrt{(h^{2} - ab)(l^{2} + m^{2})}}{am^{2} - 2hlm + bl^{2}}$$

- (d) none of these
- 31. The equation of a circle passing through the origin and making intercepts 4, 5 on the coordinate axes is (a) $x^2 + y^2 - 4x + 5y = 0$

(b)
$$x^2 + y^2 - 4x - 5y = 0$$

(c)
$$x^2 + y^2 + 4x + 5y = 0$$

- (d) none of these
- **32.** The abscissae of two points *A* and *B* are the roots of the equation $x^2 + 2ax b^2 = 0$ and their ordinates are the roots of the equation $x^2 + 2px q^2 = 0$. The equation of the circle with *AB* as diameter is

- (a) $x^2 + y^2 + 2ax + 2py + b^2 + q^2 = 0$ (b) $x^2 + y^2 - 2ax - 2py - b^2 - q^2 = 0$ (c) $x^2 + y^2 + 2ax + 2py - b^2 - q^2 = 0$ (d) none of these
- **33.** The equation of the circle which touches both the axes and the straight line 4x + 3y = 6 in the first quadrant and lies below it is

 - (a) $4x^2 + 4y^2 4x 4y + 1 = 0$ (b) $x^2 + y^2 6x 6y + 9 = 0$ (c) $x^2 + y^2 6x y + 9 = 0$

 - (d) $4(x^2 + y^2 x 6y) + 1 = 0$
- 34. The number of common tangents to the circles $x^2 + y^2 - 6x - 2y + 9 = 0$ and
 - $x^{2} + y^{2} 14x 8y + 61 = 0$ is
 - (a) 2 (b) 3
 - (c) 1 (d) 4
- **35.** If QQ' is a double ordinate of a parabola $y^2 = 9x$, then the locus of its point of trisection is (a) $y^2 = x$ (b) $y^2 = 3x$
 - (c) $y^2 = 6x$ (d) none of these
- 36. The curve described parametrically by
 - $x = t^{2} + t + 1$, $y = t^{2} t + 1$ represents
 - (a) a pair of straight lines
 - (b) an ellipse
 - (c) a parabola
 - (d) a hyperbola
- **37.** The portion of a tangent to a parabola $y^2 = 4ax$ cut off between the directrix and the curve subtends an angle θ at the focus, where $\theta =$
 - (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$ (d) none of these
- **38.** If $y + 3 = m_1 (x + 2)$ and $y + 3 = m_2 (x + 2)$ are two tangents to the parabola $y^2 = 8x$, then
 - (a) $m_1 + m_2 = 0$ (b) $m_1 m_2 = -1$
 - (c) $m_1 m_2 = 1$ (d) none of these
- **39.** The domain of the function

$$f(x) = \sin^{-1} \left\{ \log_2 \left(\frac{1}{2} x^2 \right) \right\} \text{ is}$$

a) $[-2, -1] \cup [1, 2]$ (b) $(-2, -1] \cup [1, 2]$
c) $[-2, -1] \cup [1, 2]$ (d) $(-2, -1) \cup (1, 2)$

40. The domain of the function

(

(

$$f(x) = \cos\left[\log\left(\frac{\sqrt{16-x^2}}{3-x}\right)\right]$$
 is

- (a) (-4, 4) (b) (-4, 3)
- (c) $(-\infty, -4) \cup (3, \infty)$ (d) none of these

- **41.** The domain of the function $f(x) = \sqrt{1 \sqrt{1 x^2}}$
 - is (a) (−∞, 1) (b) (−1, ∞)
 - (c) [0, 1] (d) [-1, 1]
- 42. The domain of the function

$$f(x) = \underbrace{\log_2 \log_2 \log_2 \dots \log_2 x}_{n \text{ times}}$$
 is
(a) $(2^{n-1}, \infty)$ (b) $[2^n, \infty)$

(c)
$$(2^{n-2}, \infty)$$
 (d) none of these

- 43. $\lim_{x \to 0} \frac{e^x + e^{-x} + 2\cos x 4}{x^4}$ is equal to (a) 0 (b) 1 (c) $\frac{1}{6}$ (d) $-\frac{1}{c}$
- **44.** Let f(x) be a twice differentiable function and f''(0) = 5, then $\lim_{x \to 0} \frac{3f(x) - 4f(3x) + f(9x)}{x^2}$ is equal to
 - (a) 30 (b) 120 (c) 40 (d) none of these
 - If α and β be the roots of $ar^2 + br + c = 0$ then

45. If
$$\alpha$$
 and β be the roots of $ax^2 + bx + c = 0$, then

$$\lim_{x \to \alpha} (1 + ax^2 + bx + c)^{1/(x-\alpha)} \text{ is}$$
(a) $\log |a| (\alpha - \beta) |$ (b) $e^{a|(\alpha - \beta)|}$

(c)
$$e^{a (\beta - \alpha)}$$
 (d) none of these

46.
$$\lim_{n \to \infty} \left(\tan \theta + \frac{1}{2} \tan \frac{\theta}{2} + \frac{1}{2^2} \tan \frac{\theta}{2^2} + \dots + \frac{1}{2^n} \tan \frac{\theta}{2^n} \right) =$$
(a) $\frac{1}{2^n}$
(b) $\frac{1}{2^n} - 2 \cot \theta$

(a)
$$\theta$$

(b) θ (b) θ
(c) $2 \cot 2\theta$
(d) none of these

47. Let
$$f(x) = \begin{cases} \frac{\sqrt{1+px} - \sqrt{1-px}}{x}, -1 \le x < 0\\ \frac{2x+1}{x-2}, 0 \le x \le 1 \end{cases}$$
. If $f(x)$

is continuous in the interval [-1, 1], then p equals

(a)
$$\frac{1}{2}$$
 (b) $-\frac{1}{2}$
(c) -1 (d) 1

48. If f(x) = |x - 2| and g(x) = f[f(x)], then g'(x) for x > 20 is

(c)
$$-1$$
 (d) none of these

- **49.** If $f(x) = \sqrt{1 \sqrt{1 x^2}}$, then at x = 0, (a) f(x) is differentiable as well as continuous

 - (b) f(x) is differentiable but not continuous

- (c) f(x) is continuous but not differentiable
- (d) f(x) is neither continuous not differentiable

=

is

50. The set of points of discontinuity of the function

$$f(x) = \frac{|\sin x|}{\sin x} \text{ is }$$
(a) {0} (b) { $n\pi : n \in I$ }
(c) ϕ (d) none of these
51. If $y = (1 + x^{1/4}) (1 + x^{1/2}) (1 - x^{1/4})$, then $\frac{dy}{dx}$
(a) 1 (b) -1
(c) x (d) \sqrt{x}
52. If $y = x^{(x)^x}$, $\frac{dy}{dx} =$
(a) $x^{(x)^x} (\log x + 1)$
(b) $x^{x^x + x} \left[\log(x) (1 + \log x) + \frac{1}{x} \right]$
(c) $x^{(x)^x} \log x (1 + \log x)$
(d) none of these
53. If $y = \cos^{-1} \sqrt{\frac{\sqrt{1 + x^2} + 1}{2\sqrt{1 + x^2}}}$, then $\frac{dy}{dx} =$
(a) $\frac{1}{1 + x^2}$ (b) $\frac{-1}{2(1 + x^2)}$
(c) $\frac{1}{2(1 + x^2)}$ (d) none of these
54. If $\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 (x^3 - y^3)$, then $\frac{dy}{dx}$
equal to
(a) $\frac{x^2}{y^2} \sqrt{\frac{1 - y^6}{1 - x^6}}$ (b) $\frac{y^2}{x^2} \sqrt{\frac{1 - y^6}{1 - x^6}}$
(c) $\frac{x^2}{y^2} \sqrt{\frac{1 - x^6}{1 - y^6}}$ (d) none of these

- 55. The equation of the tangent to the curve $y = \sqrt{9-2x^2}$ at the point where the ordinate and the abscissa are equal, is
 - (a) $2x + y 3\sqrt{3} = 0$ (b) $2x + y + 3\sqrt{3} = 0$
 - (c) $2x y 3\sqrt{3} = 0$ (d) none of these
- **56.** If $f(x) = a (x 3)^{89}$, then greatest value of f(x)is
 - (a) 3 (b) a

(c) no maximum value (d) none of these

57. $f(x) = x^3 + ax^2 + bx + 5 \sin^2 x$ is an increasing function in the set of real numbers if a and b satisfy the condition (a) $a^2 - 3b - 15 > 0$ (b) $a^2 - 3b + 15 > 0$

(c)
$$a^2 - 3b + 15 < 0$$
 (d) $a > 0 b > 0$

The equation of the normal to the curve $y = 1 - 2^{x/2}$ 58. at the point of intersection with the y-axis is (a) $2y - x \log 2 = 0$ (b) 2y + x = 0(c) $2y + x \log 2 = 0$ (d) none of these 59. $\int \frac{\log(x+1) - \log x}{x(x+1)} dx$ is equal to (a) $-\frac{1}{2}\left[\log\left(\frac{x+1}{x}\right)\right]^2 + C$ (b) $C - [\{\log (x + 1)\}^2 - (\log x)^2]$ (c) $-\log\left[\log\left(\frac{x+1}{x}\right)\right] + C$ (d) $-\log\left(\frac{x+1}{x}\right) + C$ 60. $\int \sqrt{\frac{e^x - 1}{e^x + 1}} dx$ is equal to (a) $\log \left(e^x + \sqrt{e^{2x} - 1}\right) - \sec^{-1} (e^x) + C$ (b) $\log \left(e^x + \sqrt{e^{2x} - 1}\right) + \sec^{-1}(e^x) + C$ (c) $\log \left(e^x - \sqrt{e^{2x} - 1}\right) - \sec^{-1}(e^x) + C$ (d) none of these 61. Let $f(x) = \int \frac{dx}{(1+x^2)^{3/2}}$ and f(0) = 0, then f(1) =(a) $\frac{-1}{\sqrt{2}}$ (b) $\frac{1}{\sqrt{2}}$ (c) $\sqrt{2}$ (d) none of these 62. $\int \sin x \, d(\cos x)$ is equal to (a) $\frac{\sin 2x}{2} - x + C$ (b) $\frac{1}{2} \left(\frac{\sin 2x}{2} - x \right) + C$ (c) $\frac{1}{2}\left(\frac{\sin 2x}{2} + x\right) + C$ (d) none of these 63. The value of the integer $\int_{-\infty}^{\pi} e^{\cos^2 x} \cdot \cos^3 (2n+1) x \, dx,$ *n* integer, is (a) 0 (b) π (c) 2π (d) none of these 64. If $\int_{-1}^{7} f(x) dx = 4$ and $\int_{2}^{-1} (3 - f(x)) dx = 7$, then the value of $\int f(-x) dx$ is (a) 30 ⁻² (b) 29

(c) 28 (d) none of these
65.
$$\int_{0}^{2} x^{3} \sqrt{2x - x^{2}} dx$$
 is equal to
(a) $\frac{7\pi}{2}$ (b) $\frac{7\pi}{4}$
(c) $\frac{7\pi}{8}$ (d) $\frac{7\pi}{16}$
66. $\int_{0}^{2\pi} \sqrt{\frac{1 - \cos 2x}{2}} dx$ is equal to
(a) 2 (b) -2
(c) 4 (d) -4

67. The differential equation of family of parabolas with foci at the origin and axis along the x-axis is

(a)
$$y\left(\frac{dy}{dx}\right)^2 + 2x\frac{dy}{dx} - y = 0$$

(b) $x\left(\frac{dy}{dx}\right)^2 + 2y\frac{dy}{dx} - y = 0$
(c) $y\left(\frac{dy}{dx}\right)^2 + 2x\frac{dy}{dx} + y = 0$
(d) none of these

68. Solution of the equation
$$xdx + ydy + \frac{xdy - ydx}{x^2 + y^2}$$

= 0 is

(a)
$$y = x \tan\left(\frac{c+x^2+y^2}{2}\right)$$

(b) $x = y \tan\left(\frac{c+x^2+y^2}{2}\right)$
(c) $y = x \tan\left(\frac{c-x^2-y^2}{2}\right)$

- (d) none of these
- **69.** A solution of the differential equation

$$\left(\frac{dy}{dx}\right)^2 - x \frac{dy}{dx} + y = 0 \text{ is}$$

(a) $y = 2$ (b) $y = (c)$ $y = 2x - 4$ (d) $y = (c)$

70. The order of the differential equation whose general solution is given by $y = (c_1 + c_2) \cos (x + c_3)$ $-c_4 e^{x+c_5}$ where c_1, c_2, c_3, c_4, c_5 are arbitrary constants, is (a) 5

2x

 $2x^2 - 4$

(b) 4 (c) 3 (d) 2

71. The smallest integer *n* for which $\left(\frac{1+i}{1-i}\right)^n = 1$, is

(a) 2 (b) 4 (c) 8 (d) 12

- 72. The locus represented by |z-1| = |z+i| is
 - (a) a circle of radius 1
 - (b) an ellipse with foci at 1 and -i
 - (c) a line through the origin
 - (d) a circle on the join of 1 and -i as diameter

73. The value of
$$\sum_{k=1}^{10} \left(\sin \frac{2\pi k}{11} - i \cos \frac{2\pi k}{11} \right)$$
 is

(c) *i* (d) – *i*

74. The common roots of the equations $z^3 + 2z^2 + 2z + 1$ = 0 and $z^{1985} + z^{100} + 1 = 0$ are

(a)
$$-1, \omega$$
 (b) $-1, \omega^2$

(c)
$$\omega, \omega^2$$
 (d) none of these

75. The smallest integer *n* for which $\left(\frac{1+i}{1-i}\right)^n = 1$, is

- 76. The locus represented by |z-1| = |z+i| is
 - (a) a circle of radius 1
 - (b) an ellipse with foci at 1 and -i
 - (c) a line through the origin
 - (d) a circle on the join of 1 and -i as diameter

(d) 12

77. The number of odd numbers between 60 and 360 is

- (c) 153 (d) none of these
- **78.** The sum to *n* terms of the sequence log $a_n \log ar$, $\log ar^2$, ... is (a) $\frac{3}{2n} \log a^2 r^{n-1}$ (b) $n \log a^2 r^{n-1}$ (c) $\frac{3}{2n} \log a^2 r^{n-1}$ (d) none of these
- **79.** If the first, second and last terms of an A.P. are a, band 2a respectively, then its sum is

(a)
$$\frac{ab}{2(b-a)}$$
 (b) $\frac{ab}{b-a}$
(c) $\frac{3ab}{2(b-a)}$ (d) none of these

- 80. Between two numbers whose sum is $2\frac{1}{6}$, an even number of arithmetic means are inserted. If the sum of
 - these means exceeds their number by unity, then the number of means are
 - (a) 12 (b) 10 (c) 8
 - (d) none of these
- 81. The set of values of p for which the roots of the equation $3x^2 + 2x + p (p-1) = 0$ are of opposite sign is (a) $(-\infty, 0)$ (b) (0,1) (d) (0,∞) (c) (1,∞)
- 82. If the ratio of the roots of $lx^2 + nx + n = 0$ is p : q, then

(a)
$$\sqrt{\frac{q}{p}} + \sqrt{\frac{p}{q}} + \sqrt{\frac{l}{n}} = 0$$

(b)
$$\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = 0$$

(c) $\sqrt{\frac{q}{p}} + \sqrt{\frac{p}{q}} + \sqrt{\frac{l}{n}} = 1$
(d) $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = 1$
The equation $125^x + 45^x = 2.27^x$

83.	The equation $125^{x} + 45^{x} = 2.27^{x}$ has			
	(a) no solution	(b) one solution		
	(c) two solutions	(d) more than two solutions		
84.	If sin θ and cos θ are the	ne roots of the equation		

- $ax^{2} + bx + c = 0, \text{ then}$ (a) $(a c)^{2} = b^{2} c^{2}$ (b) $(a c)^{2} = b^{2} + c^{2}$ (c) $(a + c)^{2} = b^{2} c^{2}$ (d) $(a + c)^{2} = b^{2} + c^{2}$
- 85. ${}^{47}C_4 + \sum_{j=1}^{5} {}^{52-j}C_3 =$ (a) ${}^{52}C_4$ (b) ${}^{51}C_4$ (c) ${}^{52}C_3$ (d) none of these
- **86.** A man has got seven friends. The number of ways in which he can invite one or more of his friends to dinner, is
 - (a) 116 (b) 128
 - (c) 127 (d) none of these
- 87. If there are 12 persons in a party, and if each of them shakes hands with each other, then number of handshakes happen in the party is(a) 66 (b) 48

(a)	00	(U)	40
(c)	72	(d)	none of these

88. In an examination there are three multiple choice questions and each question has 4 choices. Number of ways in which a student can fail to get all answers correct is

(a)	11	(b)	12
(c)	27	(d)	63
		•	. 12

89. The 8th term of $\left(3x + \frac{2}{3x^2}\right)^{12}$, when expanded in ascending power of *x*, is

(a)
$$\frac{228096}{x^3}$$
 (b) $\frac{228096}{x^9}$
(c) $\frac{328179}{x^9}$ (d) none of these

90. The greatest term (numerically) in the expansion of

$$(3-5x)^{11}$$
 when $x = \frac{1}{5}$ is
(a) 55×3^9 (b) 46×3^9
(c) 55×3^6 (d) none of these

· 1

- **91.** The value of x in the expression $(x + x^{\log_{10} x})^5$, if the third term in the expansion is 10,00,000, is (a) 10^{-1} (b) 10^1 (c) $10^{-5/2}$ (d) $10^{5/2}$
- **92.** If 7^{103} is divided by 25, then the remainder is

93. The coefficient of
$$x^n$$
 in the expansion of $\frac{a-bx}{a^x}$ is

(a)
$$\frac{(-1)^n}{n!}(a-bn)$$
 (b) $\frac{(-1)^n}{n!}(a+bn)$
(c) $\frac{(-1)^n}{(b+an)}$ (d) none of these

94.
$$\sum_{n=1}^{n!} \frac{C(n,0) + C(n,1) + \dots + C(n,n)}{P(n,n)}$$
 is equal to
(a) e^2 (b) $e^2 + 1$
(c) $e^2 - 1$ (d) none of these
95. $\frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \dots$ will be equal to
(a) $2e^{-2}$ (b) e^{-2}
(c) e^{-1} (d) $2e^{-1}$
96. The sum of these series $\sum_{n=0}^{\infty} \frac{n^2 - n + 1}{n!}$ is
(a) $2e$ (b) $\frac{3}{2}e$
(c) e (d) $3e$

- **97.** If AB = A and BA = B, then B^2 is equal to (a) B (b) A(c) 1 (d) 0
- **98.** Let *A* be an invertible matrix, which of the following is not true ?

(a)
$$(A')^{-1} = (A^{-1})'$$
 (b) $A^{-1} = |A|^{-1}$
(c) $(A^2)^{-1} = (A^{-1})^2$ (d) none of these

99. The matrix
$$A = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix}$$
 is

(d) x is an integral multiple of π

100. If
$$P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$
, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = PAP^T$, then

$$P(Q^{2005})P^{T}$$
 is equal to

(a)
$$\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} \sqrt{3}/2 & 2005 \\ 1 & 0 \end{bmatrix}$
(c) $\begin{bmatrix} 1 & 2005 \\ \sqrt{3}/2 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & \sqrt{3}/2 \\ 0 & 2005 \end{bmatrix}$

Answer Keys

1. (b)	2. (a)	3. (b)	4. (a)	5. (d)	6. (b)
7. (d)	8. (c)	9. (a)	10. (c)	11. (a)	12. (b)
13. (a)	14. (c,d)	15. (b)	16. (a)	17. (d)	18. (a)
19. (d)	20. (d)	21. (c)	22. (a)	23. (a)	24. (a)
25. (d)	26. (a)	27. (b)	28. (b)	29. (c)	30. (c)
31. (c)	32. (b)	33. (c)	34. (a)	35. (d)	36. (a)
37. (c)	38. (c)	39. (b)	40. (c)	41. (b)	42. (d)
43. (d)	44. (c)	45. (b)	46. (b)	47. (b)	48. (a)
49. (d)	50. (b)	51. (c)	52. (a)	53. (c)	54. (b)
55. (b)	56. (b)	57. (c)	58. (a)	59. (a)	60. (a)
61. (a)	62. (a)	63. (a)	64. (a)	65. (b)	66. (c)
67. (c)	68. (a)	69. (c)	70. (c)	71. (c)	72. (b)
73. (c)	74. (c)	75. (c)	76. (b)	77. (a)	78. (c)
79. (a)	80. (b)	81. (b)	82. (b)	83. (d)	84. (a)
85. (c)	86. (a)	87. (d)	88. (a)	89. (a)	90. (b, c)
91. (c)	92. (b)	93. (c)	94. (c)	95. (a)	96. (a)
97. (a, b)	98. (b)	99. (b)	100. (a)		