Syllabus for the M. Math. Selection Test TEST CODE MM

Open sets, closed sets and compact sets in \mathbb{R} and \mathbb{R}^{n}; convergence and divergence of sequence and series; continuity, uniform continuity, differentiability, Mean Value Theorem; pointwise and uniform convergence of sequences and series of functions, Taylor expansion, power series; integral calculus of one variable : Riemann integration, Fundamental theorem of calculus, change of variable; directional and total derivatives, Jacobians, chain rule; maxima and minima of functions of one and two variables; elementary topological notions for metric space : compactness, connectedness, completeness; elements of ordinary differential equations.

Equivalence relations and partitions; primes and divisibility; groups: subgroups, products, quotients, homomorphisms, Lagrange's theorem, Sylow's theorems; commutative rings and fields: ideals, maximal ideals, prime ideals, quotients, congruence arithmetic, integral domains and fields of quotients, principal ideal domains, unique factorization domains, polynomial rings; field extensions, normal extensions, roots and factorization of polynomials, finite fields; vector spaces: subspaces, basis, dimension, direct sum, quotient spaces; matrices, systems of linear equations, determinants, eigenvalues and eigen vectors; diagonalization, triangular forms; linear transformations and their representation as matrices, kernel and image, rank; inner product spaces, orthogonality and quadratic forms, conics and quadrics.

Sample Questions for the Selection Test

Notation : $\mathbb{R}, \mathbb{C}, \mathbb{Z}$ and \mathbb{N} denote the set of real numbers, complex numbers, integers and natural numbers respectively.
(1) Let $A \subseteq \mathbb{R}^{n}$ and $f: A \rightarrow \mathbb{R}^{m}$ be a uniformly continuous function. If $\left\{x_{n}\right\}_{n \geq 1} \subseteq A$ is a Cauchy sequence then show that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists.
(2) Let $N>0$ and let $f:[0,1] \rightarrow[0,1]$ be denoted by $f(x)=1$ if $x=1 / i$ for some integer $i \leq N$ and $f(x)=0$ for all other values of x. Show that f is Riemann integrable.
(3) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=\max \{|x|,|y|\} .
$$

Show that f is a uniformly continuous function.
(4) Let $A \subseteq \mathbb{R}^{n}$ be a closed and bounded set. Let $f: A \rightarrow A$ be such that $\|f(\boldsymbol{x})-f(\boldsymbol{y})\|=\|\boldsymbol{x}-\boldsymbol{y}\|$, for all $\boldsymbol{x}, \boldsymbol{y} \in A$, where $\|\boldsymbol{x}\|^{2}=\sum_{i=1}^{n}\left|x_{i}\right|^{2}$ for $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Show that f is onto.
(5) Let $f:(0,1) \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}0 & \text { if } x \text { is irrational } \\ \frac{1}{n} & \text { if } x=\frac{m}{n} \text { with } m, n \text { relatively prime }\end{cases}
$$

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g(x)= \begin{cases}0 & \text { if } x \leq 0 \text { or } x>\frac{1}{2} \\ 1 & \text { otherwise }\end{cases}
$$

Show that $g \circ f$ is not Riemann integrable.
(6) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function with $f(0)=0$. Define

$$
f_{n}(x)=f(n x), \text { for } x \in \mathbb{R} \text { and } n=1,2,3, \ldots
$$

Suppose that $\left\{f_{n}\right\}$ is equicontinuous on $[0,1]$, that is, for every $\varepsilon>0$ there exists a $\delta>0$ such that whenever $x, y \in[0,1]$,
$|x-y|<\delta$, we have $\left|f_{n}(x)-f_{n}(y)\right|<\varepsilon$ for all n. Show that $f(x)=0$ for all $x \in[0,1]$.
(7) Find the most general curve in \mathbb{R}^{2} whose normal at each point passes through $(0,0)$. Find the particular curve through $(2,3)$.
(8) Let A be a $n \times n$ symmetric matrix of rank 1 over the complex numbers \mathbb{C}. Show that $A=\alpha \boldsymbol{u} \boldsymbol{u}^{t}$ for some non-zero scalar $\alpha \in \mathbb{C}$ and a non-zero vector $\boldsymbol{u} \in \mathbb{C}^{n}$ (where \boldsymbol{u}^{t} is the transpose of \boldsymbol{u}).
(9) Let A be any 2×2 matrix over \mathbb{C} and let $f(x)=a_{0}+a_{1} x+$ $a_{2} x^{2}+\cdots+a_{n} x^{n}$ be any polynomial over \mathbb{C}. Show that $f(A)$ is a matrix which can be written as $c_{0} I+c_{1} A$ for some $c_{0}, c_{1} \in \mathbb{C}$, where I is the identity matrix.
(10) Let G be a nonabelian group of order 55 . How many subgroups of order 11 does it have? Using this information or otherwise compute the number of subgroups of order 5 .
(11) Let $n \in \mathbb{N}$ and p be a prime number. Let $f(x)=a_{0}+a_{1} x+$ $a_{2} x^{2}+\cdots+a_{\ell} x^{\ell}$ and $g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{m} x^{m}$, where $a_{i}, b_{j} \in \mathbb{Z} / p^{n} \mathbb{Z}$, for all $0 \leq i \leq \ell, 0 \leq j \leq m$. Suppose that $f g=0$. Prove that $a_{i} b_{j}=0$ for all $0 \leq i \leq \ell, 0 \leq j \leq m$.
(12) Suppose $f \in F[x]$ be an irreducible polynomial of degree 5 , where F is a field. Let K be a quadratic field extension of F, that is, $[K: F]=2$. Prove that f remains irreducible over K.
(13) Let $k[x, y]$ be the polynomial ring in two variables x and y over a field k. Prove that any ideal of the form $I=(x-a, y-b)$ for $a, b \in k$ is a maximal ideal of this ring. What is the vector space dimension (over k) of the quotient space $k[x, y] / I$?
(14) Consider the two fields $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$, where \mathbb{Q} is the field of rational numbers. Show that they are isomorphic as vector spaces but not isomorphic as fields.
(15) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Show that there is a line L such that $T(L)=L$
(16) Let $A=\left(a_{i j}\right)$ be a $n \times n$ matrix such that $a_{i j}=0$ for $i \geq j$. Show that $A^{n}=0$.
(17) Let $a_{1}, a_{2}, \ldots, a_{n}$ be n distinct integers. Prove that the polynomial $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)+1$ is irreducible in $\mathbb{Z}[x]$.
(18) Let ω be an n-th root of unity such that $\omega^{m} \neq 1$ for any positive integer $m<n$. Show that $(1-\omega) \ldots\left(1-\omega^{n-1}\right)=n$ [Hint : Consider the polynomial $z^{n}-1$.
Hence deduce the following : if $A_{1}, A_{2}, \ldots, A_{n}$ are the vertices of a regular n-gon inscribed in a unit circle, prove that

$$
l\left(A_{1} A_{2}\right) l\left(A_{1} A_{3}\right) \ldots l\left(A_{1} A_{n}\right)=n
$$

where $l(A B)$ denotes the length of a line segment $A B$.
(19) Let $f(x)$ be a non-constant polynomial with integer coefficients. Show that the set $S=\{f(n) \mid n \in \mathbb{N}\}$ has infinitely many composite numbers.
(20) Determine the integers n for which there exist $x, y \in \mathbb{Z} / n \mathbb{Z}$ satisfying the pair of equations $x+y=2,2 x-3 y=3$.

