Syllabus for the M. Math. Selection Test TEST CODE MM

Open sets, closed sets and compact sets in \mathbb{R} and \mathbb{R}^n ; convergence and divergence of sequence and series; continuity, uniform continuity, differentiability, Mean Value Theorem; pointwise and uniform convergence of sequences and series of functions, Taylor expansion, power series; integral calculus of one variable : Riemann integration, Fundamental theorem of calculus, change of variable; directional and total derivatives, Jacobians, chain rule; maxima and minima of functions of one and two variables; elementary topological notions for metric space : compactness, connectedness, completeness; elements of ordinary differential equations.

Equivalence relations and partitions; primes and divisibility; groups: subgroups, products, quotients, homomorphisms, Lagrange's theorem, Sylow's theorems; commutative rings and fields: ideals, maximal ideals, prime ideals, quotients, congruence arithmetic, integral domains and fields of quotients, principal ideal domains, unique factorization domains, polynomial rings; field extensions, normal extensions, roots and factorization of polynomials, finite fields; vector spaces: subspaces, basis, dimension, direct sum, quotient spaces; matrices, systems of linear equations, determinants, eigenvalues and eigen vectors; diagonalization, triangular forms; linear transformations and their representation as matrices, kernel and image, rank; inner product spaces, orthogonality and quadratic forms, conics and quadrics.

SAMPLE QUESTIONS FOR THE SELECTION TEST

Notation : \mathbb{R} , \mathbb{C} , \mathbb{Z} and \mathbb{N} denote the set of real numbers, complex numbers, integers and natural numbers respectively.

- (1) Let $A \subseteq \mathbb{R}^n$ and $f : A \to \mathbb{R}^m$ be a uniformly continuous function. If $\{x_n\}_{n\geq 1} \subseteq A$ is a Cauchy sequence then show that $\lim_{n\to\infty} f(x_n)$ exists.
- (2) Let N > 0 and let $f : [0,1] \to [0,1]$ be denoted by f(x) = 1if x = 1/i for some integer $i \leq N$ and f(x) = 0 for all other values of x. Show that f is Riemann integrable.
- (3) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x, y) = \max\{|x|, |y|\}.$$

Show that f is a uniformly continuous function.

- (4) Let $A \subseteq \mathbb{R}^n$ be a closed and bounded set. Let $f : A \to A$ be such that $||f(\boldsymbol{x}) - f(\boldsymbol{y})|| = ||\boldsymbol{x} - \boldsymbol{y}||$, for all $\boldsymbol{x}, \boldsymbol{y} \in A$, where $||\boldsymbol{x}||^2 = \sum_{i=1}^n |x_i|^2$ for $\boldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$. Show that f is onto.
- (5) Let $f:(0,1) \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational }, \\ \frac{1}{n} & \text{if } x = \frac{m}{n} \text{ with } m, n \text{ relatively prime} \end{cases}$$

Let $g : \mathbb{R} \to \mathbb{R}$ be defined by

$$g(x) = \begin{cases} 0 & \text{if } x \le 0 \text{ or } x > \frac{1}{2}, \\ 1 & \text{otherwise.} \end{cases}$$

Show that $g \circ f$ is not Riemann integrable.

(6) Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous function with f(0) = 0. Define

$$f_n(x) = f(nx)$$
, for $x \in \mathbb{R}$ and $n = 1, 2, 3, \dots$

Suppose that $\{f_n\}$ is equicontinuous on [0, 1], that is, for every $\varepsilon > 0$ there exists a $\delta > 0$ such that whenever $x, y \in [0, 1]$,

 $\mathbf{2}$

 $|x-y| < \delta$, we have $|f_n(x) - f_n(y)| < \varepsilon$ for all *n*. Show that f(x) = 0 for all $x \in [0, 1]$.

- (7) Find the most general curve in \mathbb{R}^2 whose normal at each point passes through (0,0). Find the particular curve through (2,3).
- (8) Let A be a $n \times n$ symmetric matrix of rank 1 over the complex numbers \mathbb{C} . Show that $A = \alpha \boldsymbol{u} \boldsymbol{u}^t$ for some non-zero scalar $\alpha \in \mathbb{C}$ and a non-zero vector $\boldsymbol{u} \in \mathbb{C}^n$ (where \boldsymbol{u}^t is the transpose of \boldsymbol{u}).
- (9) Let A be any 2×2 matrix over \mathbb{C} and let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ be any polynomial over \mathbb{C} . Show that f(A) is a matrix which can be written as $c_0I + c_1A$ for some $c_0, c_1 \in \mathbb{C}$, where I is the identity matrix.
- (10) Let G be a nonabelian group of order 55. How many subgroups of order 11 does it have? Using this information or otherwise compute the number of subgroups of order 5.
- (11) Let $n \in \mathbb{N}$ and p be a prime number. Let $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_\ell x^\ell$ and $g(x) = b_0 + b_1x + b_2x^2 + \dots + b_mx^m$, where $a_i, b_j \in \mathbb{Z}/p^n\mathbb{Z}$, for all $0 \leq i \leq \ell, 0 \leq j \leq m$. Suppose that fg = 0. Prove that $a_ib_j = 0$ for all $0 \leq i \leq \ell, 0 \leq j \leq m$.
- (12) Suppose $f \in F[x]$ be an irreducible polynomial of degree 5, where F is a field. Let K be a quadratic field extension of F, that is, [K : F] = 2. Prove that f remains irreducible over K.
- (13) Let k[x, y] be the polynomial ring in two variables x and y over a field k. Prove that any ideal of the form I = (x - a, y - b)for $a, b \in k$ is a maximal ideal of this ring. What is the vector space dimension (over k) of the quotient space k[x, y]/I?
- (14) Consider the two fields $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$, where \mathbb{Q} is the field of rational numbers. Show that they are isomorphic as vector spaces but not isomorphic as fields.
- (15) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation. Show that there is a line L such that T(L) = L
- (16) Let $A = (a_{ij})$ be a $n \times n$ matrix such that $a_{ij} = 0$ for $i \ge j$. Show that $A^n = 0$.

3

- (17) Let $a_1, a_2, ..., a_n$ be *n* distinct integers. Prove that the polynomial $f(x) = (x a_1)(x a_2)...(x a_n) + 1$ is irreducible in $\mathbb{Z}[x]$.
- (18) Let ω be an *n*-th root of unity such that $\omega^m \neq 1$ for any positive integer m < n. Show that $(1 - \omega)...(1 - \omega^{n-1}) = n$ [Hint : Consider the polynomial $z^n - 1$]. Hence deduce the following : if $A_1, A_2, ..., A_n$ are the vertices of a regular *n*-gon inscribed in a unit circle, prove that

$$l(A_1A_2)l(A_1A_3)...l(A_1A_n) = n,$$

where l(AB) denotes the length of a line segment AB.

- (19) Let f(x) be a non-constant polynomial with integer coefficients. Show that the set $S = \{f(n) | n \in \mathbb{N}\}$ has infinitely many composite numbers.
- (20) Determine the integers n for which there exist $x, y \in \mathbb{Z}/n\mathbb{Z}$ satisfying the pair of equations x + y = 2, 2x 3y = 3.

4