Roll No.	4	
Invigilat	tor's Signature :	
	CS/B.Tech (ECE)	/SEM-5/EC-513/2010-11
	2010-1	
	CONTROL SY	STEMS
Time All	lotted: 3 Hours	Full Marks: 70
	The figures in the margin i	ndicate full marks.
Candid	dates are required to give their as far as pr	answers in their own words
	GROUP -	A
	(Multiple Choice Ty	pe Questions)
1. Ch	noose the correct alternatives	for any ten of the following:
		$10 \times 1 = 10$
i)	The insertion of negative	feedback in a control system
	affects	
	a) the transient response	e to vanish uniformly
	b) the transient response	e to decay very fast
	c) no change in transien	t response
	d) the transient response	e decays at a slow state.
ii)	The location of the closed le	oop conjugate pair of poles or
	the Jw axis indicates that t	he system is
• 1	a) stable	b) unstable
	o) mardinally stable	d) critrically stable

5403

[Turn over

iii)	The	The gain of a system is 10. In terms of dB it is				
	a)	0 dB	b)	1 dB		
	c)	20 dB	d)	100 dB.		
iv)	The	phase margin of a sys	tem is	s used to specify		
an in in a	a)	time response	b)	frequency response		
	c)	absolute stability	d)	relative stability.		
v)	If the gain of an open loop system is doubled, the gain					
	ma	rgin				
	a)	is not affected	b)	gets doubled		
	c)	becomes half	d)	becomes 1/4th.		
vi)	Add	lition of poles to the clo	sed lo	oop transfer function		
	a)	increases rise time	b)	decreases rise time		
	c)	increases overshoot	d)	has no effect.		
vii)	A sy	A system has a pole at origin, its impulse response will				
	be					
	a)	constant	b)	ramp		
	c)	decaying exponentially	y d)	oscillatory.		
viii)	In force-voltage analogous system, displacement is					
	equivalent to					
	a)	current	b)	flux		
	c)	charge	′d)	inductance.		
_						

- Root locus technique is applicable to ix)
 - single loop system a)
 - multiple loop system b)
 - single as well as multiple loop system c)
 - not more than two loop systems. d)
- The Z transform F(Z) of function $f(nt) = a^{nt}$ is x)
 - $\frac{Z}{z-a^{T}}$
- b) $\frac{Z}{z+a^T}$
- $d) \frac{Z}{Z-Q^{-T}}.$
- The membership value of Fuzzy control sytem is varied xi) within the range
 - 0 to 1 a) .
 - 1 to 2 **b**) .
 - c) 0 to -1.
- the state variable xii) The transfer function for representation $\frac{dx}{dt} = Ax + Bu$, Y = Cx + Du is given by

 - a) $D+C(SI-A)^{-1}B$ b) $B(SI-A)^{-1}C+D$
 - c) $B(SI-A)^{-1}B+C$ d) $C(SI-A)^{-1}D+B$.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. A system is represented by the state & output equations is given below. Find:
 - a) Characteristic equation
 - b) The poles.

$$\dot{X} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 3 & 4 \\ 1 & 3 & 2 \end{bmatrix} X + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$

$$Y = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} X.$$

3. For a unity feedback system having open loop transfer function as $G(s) = \frac{k(s+2)}{s^2(s^2+7s+12)}$, determine (a) number of

types of the system, (b) error constants and (c) steady state error for parabolic input.

4. Find $\frac{C}{R}$ of the following signal flow graph using Mason's gain formula.

5403

- 5. For a system with $F(s)=s^4+22s^3+10s^2+s+k=0$, obtain the marginal value of k & the frequency of oscillation for that value of k.
- 6. A system is described by $\dot{X} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$ $Y = \begin{bmatrix} 1 & 0 \end{bmatrix} X.$

Check the controllability & observability of the system.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. 3

 $3 \times 15 = 45$

7. The open loop transfer function of an unity feedback system is given by $G(s) = \frac{k}{s(1+0.02s)(1+0.04s)}$. draw the Bode plot.

Find the gain margin & phase margin. Hence find the values of open loop gain so that the system has a phase margin of 45°.

- 8. The loop transfer function of a feedback control system is given by $G(s)H(s) = \frac{k(s+6)}{s(s+4)}$.
 - a) Sketch the root locus plot with K as a variable parameter & show that loci of complex roots are part of a circle.
 - b) Determine the break away/break in points if any.
 - c) Determine the range of K for which the system is underdamped.

- 9. a) Find the z-transform of $\sin \omega t$.
 - b) A sampled data system has a transfer function: G(s) = 1/(s+1). If the sampling time is one second and the system is subjected to unit-step input function, determine the discrete time response.
 - c) Obtain z-transform for the following block diagram shown in the figure.

- 10. a) Write down the advantages and disadvantages of state space techniques.
 - b) Realize H(s) in cascade form:

$$H(s) = \frac{s(s+2)}{(s+1)(s+3)(s+4)}$$

5403

c) Obtain the eigenvalues and eigenvectors for a system described by

$$\dot{X} = \begin{bmatrix} 0 & 6 & -5 \\ 1 & 0 & 2 \\ 3 & 2 & 4 \end{bmatrix} X + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} U \text{ and } Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} X. \qquad 3 + 6 + 6$$

- 11. a) Write a note on PID controller.
 - b) With the help of an example, explain the principle of fuzzy logic in control engineering.
 5 + 10