Name :	VIDENTY)
Roll No. :	
Invigilator's Signature :	1007 2

CONTROL SYSTEMS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Semi log paper and Graph Sheet/(s) will be provided by the institution

GROUP - A (Multiple Choice Type Questions)

Choose the correct alternatives for any ten of the following:

$$10 \times 1 = 10$$

- A system having transfer function $G(s) = \frac{1}{2(s+0.5)}$ is subjected to a unit step input, the steady value of the output is
 - a) 1

- The natural frequency of oscillations of the output for ii) the equation $\frac{d^2x}{dt^2} + 1.5 \frac{dx}{dt} + 4x = 1$ is
 - a)
- 0 rad/sec b) 1.5 rad/sec
 - 2 rad/sec d) c)
 - 4 rad/sec.

55904

Turn over

- iii) The type number of a transfer function denote the number of
 - a) zeros at the origin
- b) poles at infinity
- c) poles at origin
- d) zeros at infinity.
- iv) The stready state error for a unity feedback system having open loop transfer function as

 $G(S) = \frac{9}{S(0.2 S + 1)}$ when subjected to a unit step input will be

a) 0·1

b) 1/9

c) 0.2

- d) 0.
- v) The settling time of a second order system on 2% basis is given by
 - a) $t_s = \frac{4}{\zeta w_n}$
- b) $t_s = \frac{\zeta w_n}{4}$
- c) $t_s = \frac{4\zeta}{w_n}$
- d) $t_s = 4 \zeta w_n$.
- vi) Integral error control
 - a) increases the order of the system
 - b) decreases the order of the system
 - c) increases the steady state error
 - d) does not affect the steady state error.

2

- vii) The initial slope of the Bode plot gives an indication of
 - a) type of the system
 - b) nature of the system time response
 - c) system stability
 - d) gain margin.
- viii) If the root locus branches cross the emaginary axis, the system becomes
 - a) overdamped
- b) underdamped
- c) oscillatory
- d) sustained oscillations.
- ix) The transfer function of an integral compensator is given by
 - a) $\frac{1}{s}$

b) $\frac{1}{s^2}$

c) $\frac{k}{s}$

- d) ks.
- x) The state transition matrix ϕ (t) is given by
 - a) [SI]-[A]
 - b) $\{[SI]\}-[A]\}^{-1}$
 - c) $h^{-1}\{[SI]\}-[A]\}^{-1}$
 - d) $h^{-1}\{[SI]\}-[A]\}.$

- xi) State variable approach converts an nth order system into
 - n 2nd order differential equations a)
 - b) 2 differential equations
 - n 1st order differential equations c)
 - a low order system. d)
 - The number of forward paths in the signal flow graph shown below is

a) 1 b)

c) 3

5. d)

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

A unity feedback heat treatment system has open loop 2. transfer function

10000 G(s) = $\frac{10000}{(1+s)(1+0.5s)(1+0.02s)}$. The output set point is 500°C. What is the steady state temperature?

3. Find the range of k to keep the system shown in figure to be stable.

4. Determine the transfer function of the network shown in figure relating $E_o(s) \& E_i(s)$

5. Find the transfer function from the following signal flow graph using Mason's gain farmula.

 Construct the state model for a system characterized by the differential equation

and observability of the system :

$$\ddot{Y} + 5\dot{y} + 6y = 4.$$

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

7. Obtain the root locus for a unity feedback system with open loop transfer function

 $G(s) = \frac{k}{s(s^2 + 6s + 25)}$. Show all relevant steps.

8. Draw the Bode plot of the system whos open loop transfer function is given by

 $GH(s) = \frac{k}{s(1+s)(1+0.1s)(1+0.02s)}$. Determine the value of k for the gain margin of 10 dB.

9. a) Obtain the transfer function for the system which is represented in state space representation as follows:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -3 & 1 \\ -3 & -4 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u.$$

$$Y = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

b) A linear time invariant system is characterised by the state variable model. Comment on the controllability and observability of the system:

10 + 5

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u.$$

- 10. a) Find Z transform of cos wt.
 - b) Obtian Z transer function for the block diagram shown in the figure.

5 + 10

- 11. a) Explain with an example the steps to find the phase trajectory of a second order system using method of isoclines.
 - b) Write a note on PID controller.

10 + 5