2/6/12 Code: A-20

AMIETE - ET (OLD SCHEME)

Code: AE25	Subject: PHYSIC	AL ELECTRONICS A	AND SOLID S	STATE DEVICES
Fime: 3 Hours				Max. Marks: 100
	L TUNIE AA4A L			

JUNE 2010

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. In a PNP transistor, the saturation current is due to the flow of
 - (A) electrons from collector to base.
 - **(B)** holes from collector to base.
 - **(C)** electrons from emitter to base.
 - **(D)** holes from emitter to base.
- b. Fermi level in an intrinsic semiconductor lies
 - (A) In the middle of the conduction band.
 - **(B)** closer to valence band than conduction band.
 - (C) in the middle of the forbidden band.
 - **(D)** closer to conduction band than valence band.
- c. Gallium arsenide belongs to the following group:
 - (A) II-VI

(B) III-V

(C) III-IV

- **(D)** II-III
- d. Mobile electrons are found in
 - (A) Conduction band.

(B) valence band.

(C) below the valence band.

- **(D)** in the band gap.
- e. Zener break-down depends on
 - (A) Electric field created across the depletion region.
 - **(B)** Velocity of the carriers.
 - (C) Number of donor ions.
 - **(D)** Number of acceptor ions.
- f. Solar cell is a type of
 - (A) photoconductive device.
- **(B)** photoemissive device.
- (C) photovoltaic device.
- **(D)** electromotive device.
- g. p-n junctions are classified as abrupt junctions and linearly graded junctions based on
 - (A) depletion layer width.
- (B) build-in potential.
- **(C)** doping concentration gradient.
- (D) break-down voltage.

2/6/12 Code: A-20

h. A transistor works as a switch between

		(A) cut-off and saturation region.(C) cut-off and active region.	(B) active and saturation region.(D) none of these		
	i. Storage time in a transistor occurs when it is operating in				
		(A) active region.(C) saturation region.	(B) cut-off region.(D) either active or saturation region.		
	j.	A Light Emitting Diode (LED) is a			
		(A) display device.(C) zener diode.	(B) storing device.(D) voltage regulator.		
		•	TIVE Questions out of EIGHT Question carries 16 marks.	ons.	
Q.2	a.		am, properly labelled, discuss briefly a m contact. Why do same semiconducting (8)	* * ·	
		b. What is the donor concentration	on in n-type germanium of 1 ohm cm re	esistivity at 300°K? The mobility of	
		germanium is 3900 cm ² /V – sec on		(8)	
Q.3	a.	Prove that the 'Fermi level' lies apprintrinsic semiconductor. (8)	mi level' lies approximately at the centre of the energy gap at room temperature in the case of an ector. (8)		
	b.	Explain the construction of a varacto	r diode. Give important applications of the	his diode. (8)	
Q.4	a		rith necessary precautions for determining becimen. Establish the relations used. (8		
	b.	Explain the formation of domains in a	a Gunn diode.	(8)	
Q.5	a	a. Explain degeneracy in semiconductions of this diode.	ctors. How is it linked with Tunnel dioc (8)	de? Write principle of operation and	
	b.	Describe the principle of working of	LED. What are the merits of LEDs?	(8)	
Q.6	i	a. What is an integrated circuit (IC assembly. How will you make a mo	C)? Discuss the relative advantages and nolithic IC?	d disadvantages of ICs over discrete (8)	
	b.	Explain the phenomenon called "Ear	ly Effect".	(8)	
Q. 7	a	. Distinguish between depletion mo channel 'pinch off' at higher drain-so	de and enhancement mode MOSFETs. burce voltage drop.	Explain the mechanism that leads to (8)	
	b.	Discuss in brief the basic principle ar	nd applications of change transfer devices	. (8)	
Q.8	a.	Consider an abrupt p-n junction sola	r cell with uniformly doped n-and p-region	ons. Draw the energy band diagram of	

iete-elan.ac.in/qpjun10/AE25.htm

2/6/12 Code: A-20

- (i) the short circuit condition
- (ii) the open circuit condition.

(8)

(8)

- b. Explain the working of an IMPATT diode. What are the applications of this diode?
- Q.9 a. Electrons in n-type germanium have a mobility of $3600 \,\mathrm{cm}^2/\mathrm{V}$ sec ond at room temperature. Assume that the effective mass of an electron in the conduction band is $\left(\frac{1}{4}\right)$ m, where m is the mass of a free electron, calculate the time between collisions with the lattice. (8)
 - b. What are semiconductor lasers? How do they provide a portable and easily controlled source of low-power coherent radiation? (8)