INDIANET @IIT-JEE, Where technology meets education! Visual Physics, Maths \& Chemistry; Classroom \& Online Courses.

IIT-JEE 2004 Mains Questions \& Solutions - Maths - Version 2
(The questions are based on memory)

Break-up of marks:

Algebra	Trigonometry	Co-ordinate Geometry	Calculus	Vector/3D
$\mathbf{2 4 (4 0 \%)}$	$\mathbf{0}$	$\mathbf{8 (1 3 \%)}$	$\mathbf{2 2 (3 7 \%)}$	$\mathbf{6 (1 0 \%})$

1. A parallelepiped S with base $A B C D$ and top $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is compressed to a parallelepiped T with the same base ABCD and top A"B"C"D". Volume of T is 90% that of S . Prove that the locus of $\mathrm{A} "$ is a plane.

Solution

Volume of parallelepiped = Area of base ABCD X perpendicular distance between ABCD and $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$

$$
=\mathrm{A} \text { X h }
$$

Base area ABCD of the parallelepiped $=\mathrm{A}=$ constant
If volume is now 0.9 times the initial volume, height between $A B C D$ and A"B"C"D" $=h \prime=0.9 h$

Therefore the plane A"B"C"D" will always be at a fixed height 0.9 h from ABCD.

Hence locus of A" is a plane parallel to the plane ABCD and at a fixed distance from it.
2. Using Rolle's theorem, prove that there is a root of

$$
\begin{equation*}
p(x)=51 x^{101}-2323 x^{100}-45 x+1035 \text { in }\left(45^{1 / 100}, 46\right) \tag{2}
\end{equation*}
$$

Solution

Consider, $q(x)=\int p(x) d x=\frac{x^{102}}{2}-23 x^{101}-\frac{45}{2} x^{2}+1035 x+C$
$\mathrm{q}(\mathrm{x})$ being polynomial function is differentiable and continuous in $\left(45^{1 / 100}, 46\right)$ and

$$
q\left(45^{1 / 100}\right)=q(46)=C
$$

By Rolle's theorem

INDIANET @IIT-JEE, Where technology meets education! Visual Physics, Maths \& Chemistry; Classroom \& Online Courses.
$\therefore q^{\prime}(x)=p(x)=51 x^{101}-2323 x^{100}-45 x+1035=0$ has at least one root in $\left(45^{1 / 100}, 46\right)$.
3. Given, $y_{(x)}=\int_{\pi^{2} / 16}^{x^{2}} \frac{\cos x \cdot \cos \sqrt{\theta}}{1+\sin ^{2} \sqrt{\theta}} d \theta$, find $\frac{d y}{d x}$ at $\mathrm{x}=\pi$.

Solution

$$
\begin{aligned}
& y(x)= \int_{\pi^{2} / 16}^{x^{2}} \frac{\cos x \cdot \cos \sqrt{\theta}}{1+\sin ^{2} \sqrt{\theta}} d \theta \\
& y^{\prime}(x)= \\
&=\cos x\left[\frac{d}{d x} \int_{\pi^{2} / 16}^{x^{2}} \frac{\cos \sqrt{\theta}}{1+\sin ^{2} \sqrt{\theta}} d \theta\right]_{-}^{\sin x \int_{\pi^{2} / 16}^{x^{2}} \frac{\cos \sqrt{\theta}}{1+\sin ^{2} \sqrt{\theta}} d \theta} \\
&=\frac{\cos x \cdot \cos |x|}{1+(\sin |x|)^{2}} \cdot 2 x \quad \sin x \int_{\pi^{2} / 16}^{x^{2}} \frac{\cos \sqrt{\theta}}{1+\sin ^{2} \sqrt{\theta}} d \theta \\
& y^{\prime}(\pi)=2 \pi
\end{aligned}
$$

4. A plane passing through $(1,1,1)$ parallel to the lines having direction ratios $(1,-1$, 0) and $(1,0,-1)$ respectively makes intersection on the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively. Find the volume of tetrahedron formed with A, B, C and origin. [2]

Solution

Vector normal to the plane $=(\hat{i}+0 . \hat{j}-\hat{k}) \times(\hat{i}-\hat{j}+0 \hat{k})$

$$
=-(\hat{i}+\hat{j}+\hat{k})
$$

Direction ratios of normal to the plane is $(1,1,1)$
$\therefore \quad$ Equation of plane: $\mathrm{x}+\mathrm{y}+\mathrm{z}=3$
$\Rightarrow \quad \overrightarrow{O A}=3 \hat{i}$
$\Rightarrow \quad \overrightarrow{O B}=3 \hat{j}$
$\Rightarrow \quad \overrightarrow{O C}=3 \hat{k}$
volume of tetrahedron $=$
$\frac{1}{6}\left|\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right|=\frac{9}{2}$ cubic unit

INDIANET @IIT-JEE, Where technology meets education! Visual Physics, Maths \& Chemistry; Classroom \& Online Courses.
5. $f(x)$ is defined as $f:(-1,1) \rightarrow R$ and is differentiable on $(-1,1)$. It is given that $f^{\prime}(0)=\lim _{n \rightarrow \infty} n\left(f\left(\frac{1}{n}\right)\right)$ also $f(0)=0$. Find the value of $\lim _{n \rightarrow \infty}\left(\frac{2}{\pi}(n+1) \cos ^{-1} \frac{1}{n}-n\right)$ given that $\left\lvert\, \cos ^{-1}\left(\frac{1}{n}\right) \leq \frac{\pi}{2}\right.$.

Solution

$$
\begin{array}{rll}
& \lim _{n \rightarrow \infty}\left(\frac{2}{\pi}(n+1) \cdot \cos ^{-1}\left(\frac{1}{n}\right)-n\right) & \tag{2}\\
= & \lim _{n \rightarrow \infty}\left(\frac{2}{\pi}(n+1)\left(\frac{\pi}{2}-\sin ^{-1} \frac{1}{n}\right)-n\right) & \\
= & \lim _{n \rightarrow \infty}\left((n+1)-\frac{2}{\pi}(n+1) \sin ^{-1} \frac{1}{n}-n\right) & \\
= & \lim _{n \rightarrow \infty}\left(1-n \cdot \frac{2}{\pi} \sin ^{-1} \frac{1}{n}-\frac{2}{\pi} \sin ^{-1} \frac{1}{n}\right) & \\
= & 1-\frac{2}{\pi} \cdot f^{\prime}(0)-\frac{2}{\pi} \lim _{n \rightarrow \infty} \sin ^{-1} \frac{1}{n} & {\left[\because \lim _{n \rightarrow \infty} n \cdot f\left(\frac{1}{n}\right)=f^{\prime}(0)\right.} \\
= & 1-\frac{2}{\pi} \cdot f^{\prime}(0) & \\
= & 1-\frac{2}{\pi}
\end{array}
$$

here $f(x)=\sin ^{-1} x$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}} \\
& f^{\prime}(0)=1
\end{aligned}
$$

6. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, prove that $\vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{d} \neq \vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{d}$, where $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are distinct vectors.

Solution

Here $(\vec{a}-\vec{d}) \times(\vec{c}-\vec{b})=(\vec{a} \times \vec{c})+(\vec{d} \times \vec{b})-(\vec{a} \times \vec{b})-(\vec{d} \times \vec{c})=0$

$$
\begin{array}{ll}
\Rightarrow & (\vec{a}-\vec{d})_{\|}(\vec{c}-\vec{b}) \\
\therefore & (\vec{a}-\vec{d}) \cdot(\vec{c}-\vec{b}) \neq 0 \\
\Rightarrow & \vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{d} \neq \vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{d}
\end{array}
$$

INDIANET @IIT-JEE, Where technology meets education! Visual Physics, Maths \& Chemistry; Classroom \& Online Courses.
7. Using permutation or otherwise, prove that $\frac{\underline{n}^{2}}{(\underline{n})^{n}}$ is an integer, where n is a positive integer.

Solution

Let $r+1, r+2 \ldots . r+n$ are n consecutive integers
Product of these $=(r+1)(r+2) \ldots(r+n)$

$$
\begin{aligned}
& =\frac{1 \ldots r \cdot(r+1) \ldots(r+n)}{1 \ldots r} \\
= & \frac{(n+r)!}{r!}={ }^{n+r} P_{n}
\end{aligned}
$$

Which is an integer
$n^{2}!=(1 \times 2 \ldots . . n) \times((n+1) \ldots . .2 n) \times((2 n+1) \ldots . .3 n) \ldots \ldots\left(\left(n^{2}-n+1\right) \ldots n^{2}\right)$
There are n groups of n consecutive integers and each will be divisible by n ! So $n^{2}!$ is divisible by $(n!)^{n}$.
8. Find the center and radius of the circle $\left|\frac{z-\alpha}{z-\beta}\right|=k ; \alpha=\alpha_{1}+i \alpha_{2}, \beta=\beta_{1}+i \beta_{2}$, $k \neq 1, z=x+i y$.

Solution

Here

$$
\begin{array}{ll}
& |z-\alpha|^{2}=k^{2}|z-\beta|^{2} \\
\Rightarrow \quad & (z-\alpha)(\bar{z}-\bar{\alpha})=k^{2}(z-\beta)(\bar{z}-\bar{\beta}) \\
\Rightarrow \quad & \left(k^{2}-1\right) z \bar{z}+z\left(\bar{\alpha}-k^{2} \bar{\beta}\right)+\bar{z}\left(\alpha-k^{2} \beta\right)+\left(k^{2} \cdot|\beta|^{2}-|\alpha|^{2}\right)=0 \\
\text { Centre } \equiv & \frac{k^{2} \beta-\alpha}{k^{2}-1} \\
\text { Radius }= & \frac{1}{\left(k^{2}-1\right)} \sqrt{\left|\alpha-k^{2} \beta\right|^{2}-\left(k^{2} \cdot|\beta|^{2}-|\alpha|^{2}\right) \cdot\left(k^{2}-1\right)}
\end{array}
$$

9. A and B are two independent events. C is the event that exactly one of them takes place, then prove that $P(A \cup B) \cdot P(\bar{A} \cap \bar{B}) \leq P(C)$.

Solution

Here $P(C)=P(A) P(\bar{B})+P(B) P(\bar{A})$
and $P(\bar{A} \cap \bar{B})=P(\bar{A}) P(\bar{B})$ [events are independent]

$$
\begin{array}{ll}
& P(A \cup B)=P(A)+P(B)-P(A) P(B) \\
\Rightarrow \quad & P(A \cup B) \cdot P(\bar{A} \cap \bar{B}) \leq(P(A)+P(B)) .(P(\bar{A}) \cdot P(\bar{B}))
\end{array}
$$

INDIANET @IIT-JEE, Where technology meets education! Visual Physics, Maths \& Chemistry; Classroom \& Online Courses.

$$
\begin{array}{ll}
\Rightarrow & P(A \cup B) \cdot P(\bar{A} \cap \bar{B}) \leq P(A) \cdot P(\bar{A}) P(\bar{B})+P(B) \cdot P(\bar{B}) \cdot P(\bar{A}) \\
\Rightarrow & P(A \cup B) \cdot P(\bar{A} \cap \bar{B}) \leq P(A) P(\bar{B})+P(B) \cdot P(\bar{A}) \\
\text { [since } & (P(\bar{A})) \text { and }(P(\bar{B})) \text { are less than or equal to one] } \\
\Rightarrow & P(A \cup B) \cdot P(\bar{A} \cap \bar{B}) \leq P(C) .
\end{array}
$$

10. M is a 3×3 matrix.
$\operatorname{Det}(\mathrm{M})=1$
$M M^{T}=I$
Prove that $\operatorname{Det}(\mathrm{M}-\mathrm{I})=0$.

Solution

Let

$$
M=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & t
\end{array}\right]
$$

Since $\quad M M^{T}=I$
$\therefore \quad \mathrm{M}^{\mathrm{T}}$ is inverse of M
$\Rightarrow \quad \mathrm{M}^{\mathrm{T}}$ is adjoint M [Since $\operatorname{det}(\mathrm{M})=1$]
$\Rightarrow \quad\left[\begin{array}{lll}a & d & g \\ b & e & h \\ c & f & t\end{array}\right]=\left[\begin{array}{lll}e t-f h & c h-b t & b f-c e \\ g f-d t & a t-c g & c d-a f \\ d h-e g & b g-a h & a e-b d\end{array}\right]$
Now,

$$
|M-I|=\left|\begin{array}{ccc}
a-1 & b & c \\
d & e-1 & f \\
g & h & t-1
\end{array}\right|
$$

On expanding above determinant and using (1) $|M-I|=0$

INDIANET @IIT-JEE, Where technology meets education! Visual Physics, Maths \& Chemistry; Classroom \& Online Courses.
11. Prove that $\sin x+2 x \geq \frac{3 x(x+1)}{\pi}, x \in\left[0, \frac{\pi}{2}\right]$. Justify any inequality used in solving the question.

Solution

Consider the function,
$f(x)=\sin x+2 x-\frac{3 x(x+1)}{\pi}$
$f^{\prime}(x)=\cos x+2-\frac{6 x}{\pi}-\frac{3}{\pi}$
$f^{\prime}(0)=+v e$
$f^{\prime}\left(\frac{\pi}{2}\right)=-v e$
The function increases initially and decreases towards the end.
There must be a point of maxima
somewhere in between 0 and $\frac{\pi}{2}$.
Now, we are in a position to plot the
 graph of the function.
The only point that needs to be checked
is $\frac{\pi}{2}$.
$f\left(\frac{\pi}{2}\right)=1+\pi-1.5\left(\frac{\pi}{2}+1\right)$
$\Rightarrow f\left(\frac{\pi}{2}\right)=-0.5+\frac{\pi}{4}=+v e$
The function is +ve at this point as well. Hence, it is clear that the function does not cut x axis anywhere in $\left[0, \frac{\pi}{2}\right]$.
Hence, the function is +ve everywhere.

INDIANET @IIT-JEE, Where technology meets education! Visual Physics, Maths \& Chemistry; Classroom \& Online Courses.

12. A line $2 x+3 y+1=0$ touches a circle C at $(1,-1)$. Another circle cuts circle ' C ' orthogonally and the end points of its diameter are $(0,-1)$ and $(-2,3)$. Find the equation of the circle ' C '.
[4]

Solution

Slope CP $=\frac{k+1}{h-1}=\frac{3}{2}$

$$
2 k+2=3 h-3
$$

$$
\begin{equation*}
3 h-2 k=5 \tag{1}
\end{equation*}
$$

Equation of second circle is

$$
\begin{align*}
& \quad(x-0)(x+2)+(y+1)(y-3)=0 \\
& x^{2}+y^{2}+2 x-2 y-3=0 \tag{2}
\end{align*}
$$

Centre $(-1,1)$ and radius $=\sqrt{5}$
Above circle is orthogonal to the circle having centre (h, k).

$$
\begin{array}{ll}
\therefore & (h-1)^{2}+(k+1)^{2}+5=(h+1)^{2}+(k-1)^{2} \tag{3}\\
& 4 h-4 k=5
\end{array}
$$

Solving (1) and (3)

$$
h=\frac{5}{2}, k=\frac{5}{4}
$$

$\therefore \quad$ Equation of circle is

$$
\left(x-\frac{5}{2}\right)^{2}+\left(y-\frac{5}{4}\right)^{2}=\frac{117}{16}
$$

13. A curve passes through $(2,0)$ and tangent at a point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ on it has slope
$\frac{(x+y)^{2}+(y-3)}{(x+1)}$. Find the equation of the curve and also find the area bounded by the curve in the fourth quadrant with the x axis.

Solution

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{(x+1)^{2}+(y-3)}{(x+1)} \\
& (x+1) \frac{d y}{d x}=(x+1)^{2}+(y-3)
\end{aligned}
$$

Let $X=x+1, Y=y-3$

$$
X \frac{d Y}{d X}=X^{2}+Y
$$

INDIANET @IIT-JEE, Where technology meets education! Visual Physics, Maths \& Chemistry; Classroom \& Online Courses.

$$
\frac{d Y}{d X}-\frac{Y}{X}=X
$$

I.F $=e^{\int-\frac{1}{X} \cdot d X}=e^{-\log X}=\frac{1}{X}$

Solution is

$$
\begin{align*}
& Y \cdot \frac{1}{X} \cdot=\int \frac{1}{X} \cdot X \cdot d X \\
& \frac{Y}{X}=X+C \\
& \frac{y-3}{x+1}=x+1+C \tag{1}
\end{align*}
$$

As curve passes through $(2,0)$
\therefore (1) becomes

$$
\begin{aligned}
&(x-3)(x+1)=(y-3) \\
& \Rightarrow y=x^{2}-2 x \\
& \text { Area }= \int_{0}^{2}\left(x^{2}-2 x\right) d x=\left[\frac{x^{3}}{3}-x^{2}\right]_{0}^{2} \\
&=\left|\frac{8}{3}-4\right|=\frac{4}{3} \\
& \text { sq. units }
\end{aligned}
$$

14. Prove that $(1+a)^{7}(1+b)^{7}(1+c)^{7} \geq 7^{7} a^{4} b^{4} c^{4}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are positive real numbers.

Solution

A.M. \geq G.M. (since the numbers are positive)

$$
\begin{array}{ll}
& \frac{a+b+c+a b+b c+c a+a b c}{7} \geq\left(a^{4} b^{4} c^{4}\right)^{1 / 7} \\
& a+b+c+a b+b c+c a+a b c \geq 7\left(a^{4} b^{4} c^{4}\right)^{1 / 7} \\
\Rightarrow \quad & 1+a+b+c+a b+b c+c a+a b c>7\left(a^{4} b^{4} c^{4}\right)^{1 / 7} \\
\Rightarrow \quad & (1+a)(1+b)(1+c)>7\left(a^{4} b^{4} c^{4}\right)^{1 / 7} \\
\Rightarrow \quad & (1+a)^{7}(1+b)^{7}(1+c)^{7}>7^{7}\left(a^{4} b^{4} c^{4}\right)
\end{array}
$$

INDIANET @IIT-JEE, Where technology meets education! Visual Physics, Maths \& Chemistry; Classroom \& Online Courses.
15. Given parabola $y^{2}-2 y-4 x+5=0$. If tangent at a point ' P ' on the curve meets the directrix at Q , and a point R divides the line segment QP externally in the ratio $\frac{1}{2}: 1$, find the locus of R.

Solution

Sol. Parabola given $(y-1)^{2}=4(x-1)$
Equation to directrix $x=0$; focus $(2,1)$
Let point $P\left(t^{2}+1,2 t+1\right)$ be on the parabola
Tangent at any point P

$$
t y-x=t^{2}+t-1
$$

Co-ordinate of point $\mathrm{Q}\left(0, \frac{t^{2}+t-1}{t}\right)$

Let the point $R(h, k)$ whose locus is to be found for which R divides PQ externally in the ratio $1: 2$

$$
\begin{align*}
& h=\frac{2\left(t^{2}+1\right)-1.0}{2-1}=2 t^{2}+2 \Rightarrow t^{2}=\frac{h-2}{2} \tag{1}\\
& k=\frac{2(2 t+1)-1 \cdot\left(\frac{t^{2}+t-1}{t}\right)}{2-1}=\frac{3 t+\frac{1}{t}+1}{1}=\frac{3 t^{2}+t+1}{t} \tag{2}
\end{align*}
$$

Using (1) and (2)

$$
\begin{array}{ll}
\Rightarrow & k=\frac{3\left(t^{2}+1\right)+(t-2)}{t} \\
\Rightarrow & k=\frac{\frac{3 h}{2}-2}{t}+1 \\
\Rightarrow & (k-1)^{2}=\frac{(3 h-4)^{2}}{4 t^{2}} \Rightarrow \quad(k-1)^{2}=\frac{(3 h-4)^{2}}{2(h-2)}
\end{array}
$$

The locus of point R is

$$
2(y-1)^{2}(x-2)=(3 x-4)^{2}
$$

INDIANET @IIT-JEE, Where technology meets education! Visual Physics, Maths \& Chemistry; Classroom \& Online Courses.
16. There are 18 balls in a box, 12 red and 6 white. 6 draws are made of one ball at a time without replacement of which at least 4 are found to be white. What is the probability that in the next 2 draws, exactly one ball is white? (Leave the answer in terms of $\mathrm{C}(\mathrm{n}, \mathrm{r})$.

Solution

This question is a direct application of Baye's theorem.
Let E be the event when there are minimum 4 white balls in 1'st 6 draws (without replacement)

$$
\begin{aligned}
& E=E_{4} \cup E_{5} \cup E_{6} \\
& E_{4} \equiv \text { exactly } 4 \text { white balls are drawn } \\
& E_{5} \equiv \text { exactly } 5 \text { white balls are drawn } \\
& E_{6} \equiv \text { exactly } 6 \text { white balls are drawn }
\end{aligned}
$$

Let F be the event such that out of next two drawn exactly one is white.

$$
\begin{aligned}
& P(F)=\frac{P\left(F \cap E_{4}\right)+P\left(F \cap E_{5}\right)+P\left(F \cap E_{6}\right)}{P\left(E_{4}\right)+P\left(E_{5}\right)+P\left(E_{6}\right)} \\
& =\frac{P\left(F / E_{4}\right) P\left(E_{4}\right)+P\left(F / E_{5}\right) P\left(E_{5}\right)+P\left(F / E_{6}\right) P\left(E_{6}\right)}{P\left(E_{4}\right)+P\left(E_{5}\right)+P\left(E_{6}\right)} \\
& =\frac{\frac{{ }^{2} C_{1}{ }^{10} C_{1}{ }^{6} C_{4}{ }^{12} C_{2}}{{ }^{12} C_{2}}+\frac{{ }^{1} C_{1}{ }^{11} C_{1}}{{ }^{18} C_{6}}{ }^{6} C_{5}{ }^{12} C_{1}}{{ }^{18} C_{2}}+0 \\
& =\frac{{ }^{2} C_{1}{ }^{10} C_{1}{ }^{6} C_{4}{ }^{12} C_{2}+{ }^{1} C_{1}{ }^{11} C_{1}{ }^{6} C_{5}{ }^{12} C_{1}}{{ }^{12} C_{2}\left({ }^{6} C_{4}{ }^{12} C_{2}+{ }^{6} C_{5}{ }^{12} C_{1}+{ }^{6} C_{6}{ }^{12} C_{0}\right)}
\end{aligned}
$$

17. Evaluate, $\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\pi+4 x^{3}}{2-\cos \left(|x|+\frac{\pi}{3}\right)} d x$.

Solution

$$
\begin{aligned}
& \int_{-\pi / 3}^{\pi / 3} \frac{\pi+4 x^{3}}{2-\cos \left(|x|+\frac{\pi}{3}\right)} d x \\
& =\int_{-\pi / 3}^{\pi / 3} \frac{\pi}{2-\cos \left(|x|+\frac{\pi}{3}\right)}+\int_{-\pi / 3}^{\pi / 3} \frac{4 x^{3} d x}{2-\cos \left(|x|+\frac{\pi}{3}\right)}
\end{aligned}
$$

INDIANET @IIT-JEE, Where technology meets education! Visual Physics, Maths \& Chemistry; Classroom \& Online Courses.

$$
=\mathrm{I}_{1}+\mathrm{I}_{2}
$$

$\mathrm{I}_{2}=0$ [odd function], $\mathrm{I}_{1}=$ Even function

$$
\begin{aligned}
& \mathrm{I}_{1}= \\
& =\frac{4 \pi}{3} \int_{0}^{\pi / 3} \frac{\sec ^{2}\left(\frac{x}{2}+\frac{\pi}{6}\right)}{1+3 \tan ^{2}\left(\frac{x}{2}+\frac{\pi}{6}\right)} d x \\
& =\int_{1 / \sqrt{3}}^{\sqrt{3}} \frac{d t}{\frac{1}{3}+t^{2}}=\frac{4 \pi}{3} \times \sqrt{3}\left[\tan ^{-1} t \sqrt{3}\right]_{1 / \sqrt{3}}^{\sqrt{3}}=\frac{4 \pi}{\sqrt{3}}\left[\tan ^{-1} 3-\frac{\pi}{4}\right]
\end{aligned}
$$

The following answers are also correct:

$$
\frac{4 \pi}{\sqrt{3}}\left[\operatorname{ArcTan} \frac{1}{2}\right]
$$

18. $f(x)=\left\{\begin{array}{cc}b \sin ^{-1}\left(\frac{x+c}{2}\right) & -\frac{1}{2}<x<0 \\ \frac{1}{2} & x=0 \\ \frac{e^{a x / 2}-1}{x} & 0<x<\frac{1}{2}\end{array}\right.$

If $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$, find the value of ' a ' and prove that $64 b^{2}=4-c^{2}$.[4]

Solution

$$
\begin{aligned}
\mathrm{RHD}= & \lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{e^{a h / 2}-1}{h}-\frac{1}{2}}{h} \\
& \lim _{h \rightarrow 0} \frac{1+\frac{a h}{2}+\frac{a^{2} h^{2}}{2^{2}} \cdot \frac{1}{2!} \ldots \ldots-1-\frac{h}{2}}{h^{2}}
\end{aligned}
$$

For the limit to exist $a=1$;

INDIANET @IIT-JEE, Where technology meets education! Visual Physics, Maths \& Chemistry; Classroom \& Online Courses.

Hence RHD $=\frac{1}{8}$
$\mathrm{LHD}=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}$
$\lim _{h \rightarrow 0} \frac{b \sin ^{-1}\left(\frac{c-h}{2}\right)-\frac{1}{2}}{-h}$
$\lim _{h \rightarrow 0} \frac{b\left\{\frac{c-h}{2}+\frac{1^{2}}{3!}\left(\frac{c-h}{2}\right)^{3}+\frac{1^{2} \cdot 3^{2}}{5!}\left(\frac{c-h}{2}\right)^{5} \cdots \cdots\right\}-\frac{1}{2}}{-h}$
As function is differentiable so this limit is equal to $\frac{1}{8}$
For this constant part must be zero and coefficient of h in the numerator must be equal to $-\frac{1}{8}$
Coefficient of h in numerator is equal to

$$
\begin{equation*}
-\frac{b}{2}\left[1+\frac{1^{2}}{3!} 3\left(\frac{c}{2}\right)^{2}+\frac{1^{2} \cdot 3^{2}}{5!} \times 5\left(\frac{c}{2}\right)^{4}+\ldots .\right]=-\frac{1}{8} \tag{1}
\end{equation*}
$$

Clearly left hand side is derivative of

$$
-b \sin ^{-1} \frac{x}{2} \text { at } x=\mathrm{c}
$$

$\Rightarrow \quad$ Left hand side of equation (1) is

$$
-b \frac{1}{\sqrt{1-\frac{c^{2}}{4}}} \cdot \frac{1}{2}=-\frac{1}{8}
$$

$\Rightarrow \quad$ Squaring both side
$64 b^{2}=4-c^{2}$
19.

$$
A=\left[\begin{array}{lll}
a & 1 & 0 \\
1 & b & d \\
1 & b & c
\end{array}\right], \quad B=\left[\begin{array}{lll}
a & 1 & 1 \\
0 & d & c \\
f & g & h
\end{array}\right] \quad U=\left[\begin{array}{l}
f \\
g \\
h
\end{array}\right], V=\left[\begin{array}{c}
a^{2} \\
0 \\
0
\end{array}\right]
$$

If $A X=U$ has infinitely many solution. Prove that $B X=V$ has no unique solution, also prove that if afd $\neq 0$, then $\mathrm{BX}=\mathrm{V}$ has no solution. X is a vector.

Solution

$$
\mathrm{AX}=\mathrm{U}
$$

$$
\Rightarrow\left[\begin{array}{lllll}
a & 1 & 0 & : & x \\
1 & b & d & : & y \\
1 & b & c & : & z
\end{array}\right]_{=}\left[\begin{array}{l}
f \\
g \\
h
\end{array}\right]
$$

$$
\Rightarrow \quad\left[\begin{array}{ccccc}
0 & 1-a b & 0-a d & : & x \\
1 & b & d & : & y \\
0 & 0 & d-c & : & z
\end{array}\right]=\left[\begin{array}{c}
f-a g \\
g \\
h-g
\end{array}\right]
$$

as $\mathrm{AX}=\mathrm{U}$ has infinitely many solution
$\Rightarrow \quad d=c$ and $h=g$
Now BX = V

$$
\begin{align*}
& {\left[\begin{array}{ccccc}
a & 1 & 1 & : & x \\
0 & d & c & : & y \\
f & g & h & : & z
\end{array}\right]=\left[\begin{array}{c}
a^{2} \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccccc}
a & 1 & 1 & : & x \\
0 & d & & c & : \\
0 & 0 & h-\frac{f}{a}-\frac{c}{d}\left(g-\frac{f}{a}\right) & : & z
\end{array}\right]=\left[\begin{array}{c}
a^{2} \\
0 \\
-a f
\end{array}\right] } \tag{1}
\end{align*}
$$

If $c=\mathrm{d}=0$ and $\mathrm{h}=\mathrm{g}$
clearly $\mathrm{BX}=\mathrm{V}$ has no unique solution
if $\mathrm{c}=\mathrm{d} \neq 0 \quad h-\frac{f}{a}-\frac{c}{d}\left(g-\frac{f}{a}\right)=0$
$\Rightarrow \quad[A: X]=0$
$\Rightarrow \quad B X=V$ has no unique solution
Now as afd $\neq 0$
$\Rightarrow \quad a \neq 0, \mathrm{f} \neq 0 \mathrm{~d} \neq 0$
$\Rightarrow \quad[A: X]=0$ but as $\quad-a f \neq 0$
$\therefore \quad$ from equation (1)

INDIANET @IIT-JEE, Where technology meets education! Visual Physics, Maths \& Chemistry; Classroom \& Online Courses.
$\mathrm{BX}=\mathrm{V}$ has no solution.
20. $\quad P_{1}$ and P_{2} are planes passing through origin. L_{1} and L_{2} also passes through origin. L_{1} lies on P_{1} not on P_{2} and L_{2} lies on P_{2} but not on P_{1}. Show that there exists points A, B, C and whose permutation $A^{\prime} . B^{\prime} . C^{\prime}$ can be chosen such that
(i) $\quad A$ is on L_{1}, B on P_{1} but not on L_{1} and C not on P_{1}.
(ii) $\quad A^{\prime}$ in on L_{2}, B^{\prime} on P_{2} but not on L_{2} and C^{\prime} not on P_{2}.

Solution

We take

$$
A=A^{\prime}=\text { origin }
$$

$B=B^{\prime}=$ any point other than origin on the line of intersection of P_{1} and P_{2}.

$$
C=C^{\prime}=\text { any point neither on } \mathrm{P}_{1} \text { nor on } \mathrm{P}_{2}
$$

In this case both conditions (i) and (ii) are fulfilled.

Similarly if we take

$$
\begin{aligned}
& A=\text { non-origin point on } L_{1} \\
& B=\text { non-origin point on the line of intersection of } P_{1} \text { and } P_{2} \\
& C=\text { non-origin point on } L_{2}
\end{aligned}
$$

If we take $\mathrm{A}=\mathrm{C}^{\prime}, \mathrm{B}=\mathrm{B}^{\prime}$ and $\mathrm{C}=\mathrm{A}^{\prime}$
Both the conditions (i) and (ii) are fulfilled

