Name:	
Roll No.:	
Invigilator's Signature :	

CS/B. Tech/SEM-1/ME-101/2009-10 2009 MECHANICAL SCIENCE – I

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives of the following: $10 \times 1 = 10$
 - i) Lami's theorem is applicable to
 - a) Equilibrium of two co-planar, concurrent forces
 - b) Equilibrium of three co-planar, concurrent forces
 - c) Equilibrium of three co-planar, non-concurrent forces
 - d) none of these.
 - ii) Stain energy is the
 - a) maximum energy which can be stored in a body
 - b) energy stored in a body when stressed to the elastic limit
 - c) energy stored in a body when stressed to the breaking point
 - d) none of these.

11901 [Turn over

- ii) Poisson's ratio is defined as
 - a) Longitudinal stress by lateral stress
 - b) Lateral stress by longitudinal stress
 - c) Longitudinal strain by lateral strain
 - d) Lateral strain by longitudinal strain.
- iv) Free body diagram of a body is drawn
 - a) by isolating the body its surrounding
 - b) by indicating the forces acting on it
 - c) both of these
 - d) none of these.
- v) If a momentum of a body is doubled, its kinetic energy will
 - a) increase by two times
 - b) increase by four times
 - c) . remain same
 - d) get halved
 - e) reduced to four times.
- vi) A body falling freely from a height of 10 m rebounds from the floor. If it losses, 20% of its energy in the impact how high will it rebounds?
 - a) 10 m

b) 8 m/a

c) 12 m

d) none of these.

vii)	The dot	product	of	two	orthogonal	vector	is
------	---------	---------	----	-----	------------	--------	----

a) one

- b) zero
- c) no definite value
- d) none of these.

viii) The centre of gravity of a uniform lamina lies at

- a) the centre of heavy portion
- b) the bottom surface
- c) the mid-point of its axis
- d) none of these.
- ix) If the velocity of projectile is u and the angle of projection is α , the maximum height attained by a projectile above the horizontal plane is
 - a) $u^2 \cos^2 \alpha/2g$
 - b) $u^2 \sin^2 \alpha/2g$
 - c) $u^2 \tan^2 \alpha/2g$
 - d) $u^2 \sin^2 \alpha/g$.
- x) Three forces $\sqrt{3}p$, p and 2p acting on a particle are in equilibrium. If the angle between first and second be 90° , the angle between second and third will be
 - a) 30°

b) 60°

c) 120°

d) 150°.

GROUP - B (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. a) State D' Alembert's principles.
 - b) A smooth circular cylinder of radius 1.5 is lying in a rectangular groove is shown in Figure 1. Find the reactions at the surfaces of contact, if there is no friction and the cylinder weighs 1000 N.

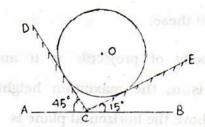


Figure 1

3. Refer to the Figure 2, determine the range of values of mass m_0 so that the 100 kg block will neither move up nor slip down the inclined plane. The coefficient of static friction for the surfaces in contact is 0.3.

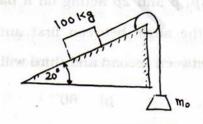


Figure 2

- 4. a) State Varigon's principle.
 - b) A circular roller of weight 100 N and radius 10 cm hangs by a ties rod AB = 20 cm and rests against a smooth vertical wall at C as shown in Figure 3. Determine the force F in the rod.

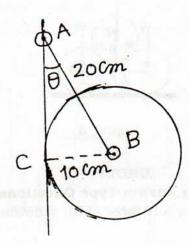


Figure 3

5. Referring to Figure 4, r = 12 cm, Q = 500 N and h = 6 cm. Find magnitude of P required to start the roller over curb.

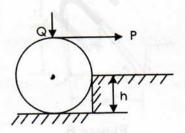
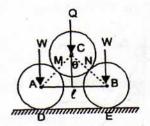
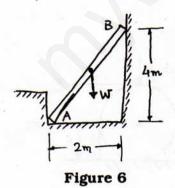


Figure 4

6. Two smooth circular cylinders of Figure 5, each of weight W = 100 N and radius r = 6 cm are connected by a string AB of length l = 16 cm and rest upon a horizontal plane, supporting a third cylinder of weight Q = 200 N and radius r = 6 cm above them. Find the tension S in the string AB and the pressure produced by the floor at points of contact D and E.




Figure 5

GROUP - C (Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

7. a) A 150 kg man stands on the mid-point of a 50 kg ladder as shown in Figure 6. Assuming that floor and the wall are perfectly smooth, find the reactions at points A and B.

b) Determine the moment of inertia for the T section (as shown in Figure 7) with respect to a centroidal axis parallel to x-axis. All dimensions are in mm. 8+7

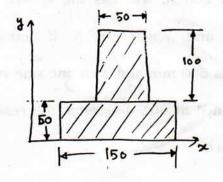
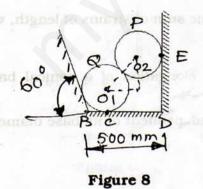



Figure 7

- a) Prove that the volumetric strain of a rectangular bar is the algebraic sum of strains of length, width and height.
 - b) Show that elongation of a conical bar under its own weight is independent of its base diameter but on length only.

8.

- c) Determine the strain energy stored within a bar of length l, cross-sectional area A, density ρ and modulus of elasticity E, hanging vertically due to its own height. 6+4+5
- 9. a) Two spheres P and Q rests in the channel as shown in Figure 8. The sphere P has a diameter 400 mm and weight of 200 N, whereas the sphere Q has diameter 500 mm and weight 500 N. If bottom width of the channel is 500 mm and with one side vertical and other side inclined at 60°, determine the reaction induced in the contacts.

b) In the Figure 9 shown, find the minimum value of horizontal force P applied to the lower block that will keep the system in equilibrium. Given, coefficients of friction between lower block and floor = 0.25, between the upper block and the vertical wall = 0.30, between the two blocks = 0.20.

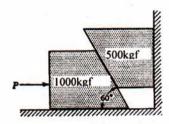


Figure 9

10. a) State the principle of virtual work.

3

b) Two blocks weighing W_1 and W_2 resting on smooth inclined planes are connected by an inextensible string passing over a smooth pulley as shown in Figure 10. Find the value of W_2 when $W_1 = 500$ N and $\alpha = 30^\circ$, $\beta = 60^\circ$.

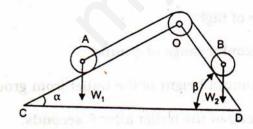


Figure 10

c) Determine velocity V of the falling weight W of the system as shown in Figure 11 as a function of its displacement from the initial position of rest. Assume weight of the cylinder as 2W.

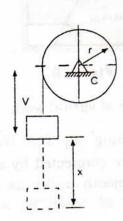


Figure 11

- 11. a) From top of a tower, 60 m high a bullet is fired at an angle of 20° up the horizontal with velocity 120 m/s. Determine
 - i) time of flight
 - ii) horizontal range of ground
 - iii) maximum height of the bullet from ground
 - iv) velocity of the bullet after 8 seconds.

Assume horizontal ground at the foot of the tower.

Determine the tension in the strings and accelerations of two blocks of masses 150 kg and 50 kg connected by a string and a frictionless, weightless pulley as shown in Figure 12.

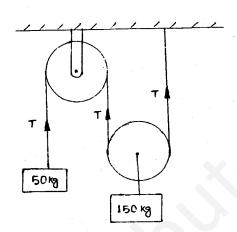


Figure 12