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                                             PART – A     (10 x 2 = 20) 

Answer All the Questions 

 

1. Find the sum and product of eigen values of the matrix  
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2. State Cayley-Hamilton theorem. 

 

3. Prove that .2log...
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4. Find the Coefficient of xn in (2 + 3x)-1. 

 

5. Find the curvature of the circle x+ + y2 = 25 

 

6. Define evolute of a curve.  

 

7. Find 
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,

,
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∂ θ
 of x = cosθ , y = r sin θ. 

 

8. Find the stationary points of 3x – x2 – y2. 



 

9. Solve xy// + y/ = 0 

 

10. Solve y// + y = sin x. 
 

     PART – B      (5 x 12 = 60) 

Answer All the Questions 

 

11. Verify Cayley-Hamilton theorem and hence find the inverse of  
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(or) 

12. Reduce the quadratic form 313221
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 to canonical form by an orthogonal transformation. 

 

13. (a) Find the sum of ∞+−+−
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 (b) If x is small, prove that 2
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(or) 

14. (a) Evaluate 
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 (b) Show that 
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15. (a) Find the radius of curvature for 
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(b) Find the envelope (x - α)2 + y2 = kα where α is the parameter.  



(or) 

16. Find the evolute of y2 = 4ax as the envelope of normals. 

 

17. (a) Expand by Taylor’s series f(x, y) = ex cos y at (0, 0) 

 

(b) Find the dimensions of the rectangular box without a top of 

maximum capacity whose surface area is 108 sq.cm. 

(or) 

18. Show that   
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Hence deduce that 
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19. (a) Solve x2
 y

//
 + xy

//
 + y = cos (2 log x) 

 

 (b) Solve t
dt
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(or) 

20. (a) Using variation of parameters, solve y// + 4y = tan 2x. 

 

 (b) Solve (D2 – 2D + 1) y = ex (3x
2 – 1) 

 

 


