SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E / B.Tech - (Common to ALL Branches) (Except to Bio-Groups)
Title of the paper: Engineering Mathematics - I
Semester: I
Sub.Code: 6C0002
Date: 05-05-2007

Max. Marks: 80
Time: 3 Hours
Session: AN

> PART - A
$(10 \times 2=20)$
Answer All the Questions

1. Find the sum and product of the eigen values of the matrix

$$
\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 2
\end{array}\right)
$$

2. Prove the matrix $M=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is orthogonal.
3. Prove that $\frac{e+1}{e-1}=\frac{\frac{1}{1!}+\frac{1}{3!}+\ldots .}{\frac{1}{2!}+\frac{1}{4!}+\ldots .}$
4. Find the coefficient of x^{n} in the expansion of $\log (2 x+3)$.
5. Define curvature of a curve.
6. Find the envelope of the family of lines $\frac{x}{t}+y t=2 c$, where t being the parameter.
7. If $\mathrm{x}=\mathrm{r} \cos \theta$ and $\mathrm{y}=\mathrm{r} \sin \theta$ prove that $\frac{\partial(r, \theta)}{\partial(x, y)}=\frac{1}{r}$.
8. If $\mathrm{u}=\mathrm{f}(\mathrm{x}-\mathrm{y}, \mathrm{y}-\mathrm{z}, \mathrm{z}-\mathrm{x})$ then prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$
9. Find the particular integral of $(D-1) y=e^{x}$.
10. Solve $x y^{\prime \prime}+y^{\prime}+\frac{y}{x}=0$.
PART - B
$(5 \times 12=60)$

Answer ALL the Questions
11. Reduce
the
quadratic
form
$8 x_{1}^{2}+7 x_{2}^{2}+3 x_{3}^{2}-12 x_{1} x_{2}+4 x_{1} x_{3}-8 x_{2} x_{3}$ in to its canonical form by using orthogonal reduction.
(or)
12. Verify Cayley - Hamilton theorem for the matrix

$$
A=\left(\begin{array}{lll}
1 & 3 & 7 \\
4 & 2 & 3 \\
1 & 2 & 1
\end{array}\right) \text { Also find } \mathrm{A}^{-1} \text { and } \mathrm{A}^{4}
$$

13. (a) Prove that $\frac{5}{1.2 .3}+\frac{7}{3.4 .5}+\frac{9}{5.6 .7}+\ldots=3 \log 2-1$.
(b) Prove that $\left(1+\frac{1}{2!}+\frac{1}{4!}+\ldots\right)^{2}=1+\left(1+\frac{1}{3!}+\frac{1}{5!}+\ldots\right)^{2}$.
(or)
14. (a) If x is small prove that $(1+x)^{\frac{1}{1-x}}=1+x+x^{2}+\frac{3 x^{3}}{2}$ approximately.
(b) Find the coefficient of x^{n} in the expansion of $\frac{1+2 x-3 x^{2}}{e^{x}}$.
15. Find the evolute of $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ as the envelope of normals. (or)
16. Find the circle of curvature of $\sqrt{x}+\sqrt{y}=\sqrt{a} d t\left(\frac{a}{4}, \frac{a}{4}\right)$.
17. A rectangular open box, open at the top is to have a volume of 32 c. ft. Find the dimensions of it, requiring least material for its construction.
(or)
18. Evaluate $\int_{0}^{x} \frac{\log (1+x y)}{1+y^{2}} d y$. Hence find the value of

$$
\int_{0}^{1} \frac{\log (1+x)}{1+x^{2}} d x
$$

19. Solve $\frac{d x}{d y}+y=S$ int $x+\frac{d y}{d t}=\cos t$ where $\mathrm{x}(0)=2$ and $\mathrm{y}(0)=0$. (or)
20. Solve by method of variation of parameters.

$$
\frac{d^{2} y}{d x^{2}}+4 y=\sec 2 x
$$

