SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E / B.Tech - (Common to A	LL Branches)
(Except to Bio-Groups)	
Title of the paper: Engineering Mathematics - I	
Semester: I	Max. Marks: 80
Sub.Code: 6C0002	Time: 3 Hours
Date: 05-05-2007	Session: AN

PART – A (10 x Answer All the Questions

(10 x 2 = 20)

1. Find the sum and product of the eigen values of the matrix

- $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$ Prove the matrix $M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is orthogonal.
- 3. Prove that $\frac{e+1}{e-1} = \frac{\frac{1}{1!} + \frac{1}{3!} + \dots}{\frac{1}{2!} + \frac{1}{4!} + \dots}$

2.

- 4. Find the coefficient of x^n in the expansion of $\log (2x + 3)$.
- 5. Define curvature of a curve.
- 6. Find the envelope of the family of lines $\frac{x}{t} + yt = 2c$, where t being the parameter.

7. If
$$x = r \cos \theta$$
 and $y = r \sin \theta$ prove that $\frac{\partial (r, \theta)}{\partial (x, y)} = \frac{1}{r}$.
8. If $u = f(x - y, y - z, z - x)$ then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$
9. Find the particular integral of $(D - 1) y = e^x$.
10. Solve $xy'' + y' + \frac{y}{x} = 0$.

PART – B
$$(5 \times 12 = 60)$$

Answer ALL the Questions

11. Reduce the quadratic form $8x_1^2 + 7x_2^2 + 3x_3^2 - 12x_1x_2 + 4x_1x_3 - 8x_2x_3$ in to its canonical form by using orthogonal reduction.

(or)
12. Verify Cayley – Hamilton theorem for the matrix

$$A = \begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$$
Also find A⁻¹ and A⁴.

13. (a) Prove that $\frac{5}{1.2.3} + \frac{7}{3.4.5} + \frac{9}{5.6.7} + \dots = 3 \log 2 - 1$.

(b) Prove that
$$\left(1 + \frac{1}{2!} + \frac{1}{4!} + \ldots\right)^2 = 1 + \left(1 + \frac{1}{3!} + \frac{1}{5!} + \ldots\right)^2$$
.
(or)

14. (a) If x is small prove that $(1+x)^{\frac{1}{1-x}} = 1 + x + x^2 + \frac{3x^3}{2}$ approximately.

(b) Find the coefficient of x^n in the expansion of $\frac{1+2x-3x^2}{e^x}$.

- 15. Find the evolute of $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ as the envelope of normals. (or)
- 16. Find the circle of curvature of $\sqrt{x} + \sqrt{y} = \sqrt{a}dt \left(\frac{a}{4}, \frac{a}{4}\right)$.
- 17. A rectangular open box, open at the top is to have a volume of 32c. ft. Find the dimensions of it, requiring least material for its construction.

(or)

18. Evaluate
$$\int_{0}^{x} \frac{\log(1+xy)}{1+y^{2}} dy$$
. Hence find the value of
$$\int_{0}^{1} \frac{\log(1+x)}{1+x^{2}} dx.$$

19. Solve
$$\frac{dx}{dy} + y = S \operatorname{int} x + \frac{dy}{dt} = \cos t$$
 where $x(0)=2$ and $y(0)=0$.
(or)

20. Solve by method of variation of parameters.

$$\frac{d^2 y}{dx^2} + 4 y = \sec 2x.$$