SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/B.Tech - Common to ALL Branches (Except to Bio Groups)
Title of the paper: Engineering Mathematics - I
Semester: I
Max. Marks: 80
Sub.Code: 6C0002
Date: 06-12-2007
Time: 3 Hours
Session: FN
PART - A $\quad(10 \times 2=20)$

Answer All the Questions

1. Find the sum and product of all eigen values of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right)
$$

2. State Cayley Hamilton theorem.
3. Prove that $a^{x}=1+x \log _{e} a+\frac{x^{2}}{2!}\left(\log _{e} a\right)^{2}+\ldots \infty$
4. Find the coefficient of x^{n} in the expansion of $1+\left(\frac{1+2 x}{1!}\right)+\frac{(1+2 x)^{2}}{2!}+\ldots \infty$
5. Find the curvature of the circle $x^{2}+y^{2}=25$.
6. Find the envelope of $\mathrm{y}=\mathrm{m} x+\sqrt{a^{2} m^{2}+b^{2}}$, where m is the parameter.
7. If $x=r \cos \theta, y=r \sin \theta$ find $J(x, y)$.
8. Expand e^{x} siny in powers of x and y as far as the terms of the second degree.
9. Find the particular integral of $\left(D^{2}-4 D+4\right) y=\cosh 2 x$.
10. Solve $\left(x^{2} D^{2}-3 x D+4\right) y=0$.

$$
\text { PART - B } \quad(5 \times 12=60)
$$

Answer All the Questions
11. Reduce the Quadratic form $2 x^{2}+5 y^{2}+3 z^{2}+4 x y$ to canonical form by an orthogonal reduction.
12. Verify Cayley Hamilton theorem and hence find A^{-1} and A^{4} for

$$
A=\left(\begin{array}{ccc}
1 & 0 & 3 \\
2 & 1 & -1 \\
1 & -1 & 1
\end{array}\right)
$$

13. Find the sum to infinity of the series $\frac{5}{3.6}+\frac{5.7}{3.6 .9}+\frac{5.7 .9}{3.6 .9 .12}+\ldots \infty$.
(or)
14. Find the sum to infinity of the series $\frac{1}{1.2 .3}+\frac{5}{3.4 .5}+\frac{9}{5.6 .7}+\ldots \infty$
15. Find the equation of the circle of curvature of the curve

$$
\sqrt{x}+\sqrt{y}=\sqrt{a} \quad a t\left(\frac{a}{4}, \frac{a}{4}\right)
$$

(or)
16. Find the evolute of the parabola $y^{2}=4 a x$ considering it as the envelope of its normals
17. (a) Find the maxima and minima of $f(x, y)=x^{3}+y^{3}-3 a x y$.
(b) Evaluate $\int \frac{x^{\alpha}-1}{\log x} d x$. by applying differentiation under the integral sign.
18. (a) If $u=f(x-y, y-z, z-x)$ show that $\frac{\delta u}{\delta x}+\frac{\delta u}{\delta y}+\frac{\delta u}{\delta z}=0$.
(b) A rectangular box open at the top is to have a given capacity k. Find the dimensions of the box requiring least material for its construction.
19. Solve $\frac{d x}{d t}+y=\sin t, \frac{d y}{d t}+x=\cos t$. (or)
20. (a) Solve $y^{\prime \prime}+y=\sec x$ by the method of variation of parameters.
(b) Solve $\left(x^{2} D^{2}+x D+1\right)=\log x \sin (\log x)$.

