SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E/B.Tech- CSE/IT/ECE/EEE/MECH/M&P/ EIE/E&C/ CHEM/ CIVIL/ETCE/AERO	
Title of the paper: Engineering Mathematics - I	
Semester: I	Max. Marks: 80
Sub.Code: 6C0002	
Date: 07-12-2006	Session: FN
PART – A	(10 x 2 = 20)
Answer ALL the Questions	
$\begin{bmatrix} 4 & 1 \end{bmatrix}$	
1. Given that $A = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$, find the eigen values	s of A^{T} .
$\begin{bmatrix} 1 & 2 \end{bmatrix}$	
2. Show that the square matrix1243	acticfica its arre
2. Show that the square matrix $\begin{bmatrix} 4 & 3 \end{bmatrix}$	sausines its own
characteristics equation.	
3. Find the sum of the series	
$(\log_{e} 2)^{2}$ $(\log_{e} 2)^{3}$	
$(\log_e 2) + \frac{(\log_e 2)^2}{2!} + \frac{(\log_e 2)^3}{3!} + \dots$	
4. When x is large, prove that $\sqrt{x^2 + 1} - \sqrt{x^2 - 1} \cong \frac{1}{x}$. 5. Find the radius of curvature at (0, 1) on the curve $x = e^x$.	
4. When x is large, prove that $\sqrt{x^2 + 1} = \sqrt{x}$ -	$-1 \cong \frac{-1}{x}$.
5. Find the radius of curvature at $(0, 1)$ on the curve $y = e^x$.	
x y	
6. Find the envelop of $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta =$	$=$ 1 where θ is the
parameter.	
L	du
7. If $u = \frac{x}{y} + \frac{Y}{Z} + \frac{Z}{X}$, find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z$	$\frac{\partial u}{\partial z}$.
$\partial(r,\vartheta)$	
8. Find the Jacobian $\frac{\partial(r, \vartheta)}{\partial(x, y)}$ if $x = r \cos\theta$, $y = r$	$r\sin heta$.

9. Find the particular integral of $(D^4 - 2D^3 + D^2)y = e^x$. 10. Solve $(D - 2)^2 y = e^{2x}$ where $D = \frac{d}{dx}$ PART – B (5 x 12 = 60) Answer ALL the Ouestions

11. Find the eigen values and eigen vectors of the matrix

$$A = \begin{bmatrix} 11 & -4 & -7 \\ 7 & -2 & -8 \\ 10 & -4 & -6 \end{bmatrix}$$
 (or)
$$\begin{bmatrix} 2 & 2 & -7 \end{bmatrix}$$

- 12. Diagonalise the matrix $A = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 1 & -3 \end{bmatrix}$ by similarity transformation.
- 13. (a) Find the sum to infinites of $\frac{7}{72} + \frac{7.28}{72.96} + \frac{7.28.49}{72.96.120} + \dots$
- (b) Find the coefficient of x^r in the expansion of $\frac{1+2x+3x^2}{e^{2x}}$

(or) 14. (a) When *n* is large, show that $\left(\frac{n+1}{n-1}\right) = e^{\binom{n+1}{2}} = e^{\binom{n+1}{3n^2}}$

(b) Find the sum to infinity of the series $1 + \frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} + \dots \infty$

15. (a) Find the evolute of the parabola $x^2 = 4ay$.

(b) Find the envelop of $\frac{x}{a} + \frac{y}{b} = 1$ where a and b are connected by the relation $a^2 + b^2 = c^2$. (or)

16. Find the center of curvature and circle of curvature at $\begin{pmatrix} a \\ \overline{4}, \overline{4} \end{pmatrix}$ on $\sqrt{x} + \sqrt{y} = \sqrt{a}$.

17. (a) If
$$u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$.

(b) Expand $e^x \cos y$ in powers of x and y upto terms of third degree using Taylor's theorem.

(or)

18. (a) Find the Jacobian of y_1 , y_2 , y_3 with respect to x_1 , x_2 , x_3 if

$$y_1 = \frac{x_2 x_3}{x_1}, y_2 = \frac{x_3 x_1}{x_2}, y_3 = \frac{x_1 x_2}{x_3},$$

(b) A rectangular box, open at the top, is to have a volume of 32C.C. Find the dimensions of the box that requires the least material for its construction.

19. (a) Solve
$$(D^2 + 16)y = e^{-3x} + \cos 4x$$
.

(b) Solve
$$\frac{dx}{dt} + y - 1 = \sin t$$
; $\frac{dy}{dt} + x = \cos t$

(or)

- 20. (a) Solve the equation $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = x \log x$.
 - (b) Solve using the method of variation of parameters d^2y

$$\frac{dx^2}{dx^2}$$
 + y = cosec x.