SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E/B.Tech- CSE/IT/ECE/EEE/MECH/M\&P/EIE/E\&C/ CHEM/ CIVIL/ETCE/AERO
Title of the paper: Engineering Mathematics - I Semester: I
Sub.Code: 6C0002
Date: 07-12-2006
Time: 3 Hours
Max. Marks: 80
Session: FN

PART - A

(10 x $2=20$)

Answer ALL the Questions

1. Given that $\mathrm{A}=\left[\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right]$, find the eigen values of A^{T}.
2. Show that the square matrix $\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$ satisfies its own characteristics equation.
3. Find the sum of the series

$$
\left(\log _{e} 2\right)+\frac{\left(\log _{\mathrm{e}} 2\right)^{2}}{2!}+\frac{\left(\log _{\mathrm{e}} 2\right)^{3}}{3!}+\ldots \infty
$$

4. When x is large, prove that $\sqrt{x^{2}+1}-\sqrt{x^{2}-1} \cong \frac{1}{x}$.
5. Find the radius of curvature at $(0,1)$ on the curve $\mathrm{y}=\mathrm{e}^{x}$.
6. Find the envelop of $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$ where θ is the parameter.
7. If $\mathrm{u}=\frac{x}{y}+\frac{Y}{Z}+\frac{Z}{X}$, find $\mathrm{x} \frac{\partial u}{\partial x}+\mathrm{y} \frac{\partial u}{\partial y}+\mathrm{z} \frac{\partial u}{\partial z}$.
8. Find the Jacobian $\frac{\partial(r, \vartheta)}{\partial(x, y)}$ if $\mathrm{x}=r \cos \theta, \mathrm{y}=r \sin \theta$.
9. Find the particular integral of $\left(D^{4}-2 D^{3}+D^{2}\right) y=e^{x}$.
10. Solve $(\mathrm{D}-2)^{2} \mathrm{y}=\mathrm{e}^{2 x}$ where $\mathrm{D}=\frac{d}{d x}$
PART - B
$(5 \times 12=60)$
Answer ALL the Questions
11. Find the eigen values and eigen vectors of the matrix

$$
A=\left[\begin{array}{ccc}
11 & -4 & -7 \\
7 & -2 & -8 \\
10 & -4 & -6
\end{array}\right]
$$

(or)
12. Diagonalise the matrix $A=\left[\begin{array}{ccc}2 & 2 & -7 \\ 2 & 1 & 2 \\ 0 & 1 & -3\end{array}\right]$ by similarity transformation.
13. (a) Find the sum to infinites of $\frac{7}{72}+\frac{7.28}{72.96}+\frac{7.28 .49}{72.96 .120}+\ldots$
(b) Find the coefficient of x^{r} in the expansion of $\frac{1+2 x+3 x^{2}}{e^{2 x}}$ (or)
14. (a) When n is large, show that $\left(\frac{n+1}{n-1}\right)^{n / 2}=\mathrm{e}\left(1+\frac{1}{3 n^{2}}\right)$
(b) Find the sum to infinity of the series $1+\frac{3}{4}+\frac{3.5}{4.8}+\frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12}+\ldots \infty$
15. (a) Find the evolute of the parabola $x^{2}=4 a y$.
(b) Find the envelop of $\frac{x}{a}+\frac{y}{b}=1$ where a and b are connected by the relation $a^{2}+b^{2}=c^{2}$.
(or)
16. Find the center of curvature and circle of curvature at $\left(\frac{a}{4}, \frac{a}{4}\right)$ on $\sqrt{x}+\sqrt{y}=\sqrt{a}$.
17. (a) If $\mathrm{u}=\mathrm{f}\left(\frac{x}{y}, \frac{y}{z} \frac{z}{x}\right)$, prove that $\mathrm{x} \frac{\partial u}{\partial x}+\mathrm{y} \frac{\partial u}{\partial y}+\mathrm{z} \frac{\partial u}{\partial z}=0$.
(b) Expand $\mathrm{e}^{x} \cos y$ in powers of x and y upto terms of third degree using Taylor's theorem.
(or)
18. (a) Find the Jacobian of y_{1}, y_{2}, y_{3} with respect to x_{1}, x_{2}, x_{3} if $y_{1}=\frac{x_{2} x_{3}}{x_{1}}, y_{2}=\frac{x_{3} x_{1}}{x_{2}}, y_{3}=\frac{x_{1} x_{2}}{x_{3}}$,
(b) A rectangular box, open at the top, is to have a volume of 32C.C. Find the dimensions of the box that requires the least material for its construction.
19. (a) Solve $\left(D^{2}+16\right) y=e^{-3 x}+\cos 4 x$.
(b) Solve $\frac{d x}{d t}+y-1=\sin t ; \quad \frac{d y}{d t}+x=\cos t$
(or)
20. (a) Solve the equation $\mathrm{x}^{2} \frac{d^{2} y}{d x^{2}}+4 \mathrm{x} \frac{d y}{d x}+2 y=x \log x$.
(b) Solve using the method of variation of parameters

$$
\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x
$$

