F. E. Examination - 2010 ENGINEERING MECHANICS (2003 Course)

Time : 3 Hours]
Instructions :
(1) Answer any three questions from each sedion.
(2) Answers to the two sections should be written in separate
books.
(3) Black figures to the right indicate foll marks.
(4) Neat diagrams must be draw merever necessary.
(5) Your answers will be valwed as a whole.
(6) Use of electronic pocket calvator is allowed.
(7) Assume suitable data,

section

Q.1) (A) Five forces are acting at anpoint ' O '. Find values of forces P_{1} and P_{2} required to kepyoint ' O ' in equilibrium. Refer Fig.1. [09]

Fig. 1
(B) A perso whose mass is 70 kg , represented by ' M ', holds 25 kgn ass as shown in Fig. 2. The pulley is assumed frictionless. The platform on which the person is standing is suspended by the Mopes at ' A ' and two ropes at ' B '. What is the tension in one rope at points A and B ?

Fig. 2
Q.2) (A) A wedge A of 50 N is to be driven between inclined plane and block B of 2000 N as shown in Fig. 3. The coefficient of friction between all surfaces of contact is 0.30 . Determine magnitude of the force ' P ' required to start motion of the wedge A .

(B) A semicircle of radius 60 mm is removedfro a trapezium. Locate centroid of the shaded portion thet remained. Refer Fig. 4. All dimensions are in mm .

Fig. 4
Q.3) (A) Horizontal Vertical Links are hinged to a wheel and force ' P ' is applied oo the link as shown in Fig. 5. Determine value of ' P ' and Peaction at ' A ' for equilibrium.

(B) Find forces in all members of truss due to vertical force of 500 N at C and horizontal force at B as shown in Fig. 6.

Fig. 6

Q.4) (A) A rectangular plate of $0.6 \mathrm{~m} \times 0.8 \mathrm{~m}$ is kept suat, one of its diagonals is horizontal, as shown in Fig. (Lgcate resultant of this force system w.r.t. line $A B$.

(B) Derive relation between tigh sile and slack side of the flat belt using usual notations
Q.5) (A) Using Virtual Work Methy find support reactions of the beam shown in Fig. 8.

Fig. 8
(B) The circular table, 1.8 m in diameter shown in Fig. 9, supports a load 400 N , located at point D on a diameter through the suppor and 300 mm from centre on the opposite side of Ra. Th support reaction R_{A}, R_{B}, R_{c} are equally spaced along the c fference. Determine magnitude of the reactions.

Q.6) (A) A homogeneous ladder having a mass ' m ' and length ' L ' is held in equilibrium by the horizontal force ' P ' as shown in Fig. 10. Using Virtual Work Method only, express force ' P ' in terms of mass ' m '.

Fig.

(B) A 80 kg mass as shown in Fig. 11, is supported by three wires concurrent at $\mathrm{D}(2,0,-1)$. The wires ${ }^{\text {attached }}$ to the point $\mathrm{A}(1,3,0), \mathrm{B}(3,3,-4)$ and $\mathrm{C}(4,3, \infty$)etermine tension in each wire.
Q.7) (A) The motion or a particle is defined by the rela

When the velocity is zero.
(2) At $\mathrm{t}=8$, position and acceleration.
(3) Total distance travelled in 0 to 8 sec.
(B) A bag having 8 kg mass is released from rest from a position ' A ' when $\theta=0$. It strikes a box ' B ' of mass 20 kg when $\theta=90^{\circ}$. Find velocities of bag 'A' and box 'B' after impact, if the coefficient of restitution is half.

Fig. ${ }^{12}$
Q.8) (A) Ships ' A ' and ' B ' leave a port at the same time. The ship ' A ' is travelling North West at 36 kmph and ship ' B ' at 40° South of West at 24 kmph .

Determine :
(1) Speed of ship ' B ' relative to ' A '.
(2) At what time the bill be 160 km apart ?
(B) Three blocks A, B, of 250N, 1000N, 500N respectively are connected by inesensible string. Determine constant force ' P ' that will give system of blocks shown in Fig., a velocity of $3 \mathrm{~m} / \mathrm{s}$ after moves a distance of 4.5 m from rest. All the blocks are moving ${ }^{\text {with }}$ constant acceleration. Take coefficient of friction $=0.20$ and assume pulleys as frictionless.

Fig. 13
Q.9) (A) A projectile is fired with an initial velocity of $260 \mathrm{~m} / \mathrm{s}$ at a target B, located at 700 m above the ground, at a horizontal distance of 3600 m from the gun as shown in Fig. 14. Neglecting air resistance, determine values of the firing angle α.

(B) A ball of weight 10 N starts from res frgm the origin ' O ' of the curve OAB and rolls under gratidy as shown in Fig. 15. Find reaction exerted on the ball at pont A, if curve is defined by the equation $\mathrm{y}=\sin \left(\frac{\mathrm{x}}{\mathrm{L}}\right.$
Q.10) (A) A partic moving along a path defined by the polar co-ordinate $r=(B+n t)$ \qquad m and $\theta=2 \mathrm{t}^{3}$ \qquad rad where ' t ' is in seconds and argument for the $\sin \mathrm{C}$ is in radians. Determine components \& its velocity and acceleration, when $\mathrm{t}=1 \mathrm{sec}$.
(B) A block assumed to be a particle and weighing 40 N rests on a plane which can turn about the y axis as shown in Fig. 16. The length of cord is 2 m . What is the tension in the cord when angular velocity of the plane and the block is 10 rev. $/ \mathrm{min}$.

Fig. 16
Q.11)(A) As shown, rod $A B$ of 1 m length reting clockwise at $2 \mathrm{rad} / \mathrm{s}$. End ' D ' of the rod $\mathrm{BD} \leqslant 2 \mathrm{~m}$ length, is free to move on a horizontal surface. Determine linear velocity of the points in its magnitude and dire for : (i) midpoint of BD. (ii) point D .
$\mathrm{AB}=1 \mathrm{~m}$
$B C=C D=1 m$
(B) Derit xpression for mass moment of inertia of a bar about ap a is through one end and perpendicular to the bar whose length
*. Assume that the mass ' m ' and the cross section is small in comparison with length.

Fig. 17
(\mathbb{N} Explain concept of Dynamic Equilibrium in case of rigid body motion.
Q.12)(A) Explain equations defining the rotation of rigid body about a fixed axis with angular displacement ' θ ' in time ' t ' in the following cases :
(1) Uniform Rotation
(2) Uniform Accelerated Rotation
(3) Variable Acceleration ' α '
(B) In Fig. 18, a box ' C ' of weight W is acceleratig gwn at the rate of $5 \mathrm{~m} / \mathrm{s}^{2}$. It is connected by weightless, flecible, inextensible rope which passes over a smooth drum to hongous cylinder B of weight 250N. The cylinder is acted upon by a moment $M=50 \mathrm{Nm}$ counterclockwise. Determinnweight ' W ' of the box ' C ' and components of reacton' at A on the cylinder.

Fig. 18

