[3661]-18

F. E. Examination - 2009

ENGINEERING MECHANICS

(2003 Course)
Time : 3 Hours]
Instructions :
(1) Solve Q. No. 1 or Q.2, Q. 3 or Q. 4 (and, Q. 5 or Q. 6 from section I and Q. 7 or Q.8, Q. 9 or Q. 1 from section II.
(2) Answers to the two sections be written in separate answer-books.
(3) Black figures to the rights insicate full marks.
(4) Neat diagrams must be ${ }^{\text {(g) }} v n$ wherever necessary.
(5) Use of electronic p cke calculator is allowed.
(6) Assume suitable data, If necessary.

Q.1) (A) Illustrate with nea ${ }^{\text {(Adenes }}$ different types of Force Systems. [04]
(B) Three forces are arplied to the bracket as shown in figure 1.1.

Determine show the equilibrant force for $\alpha=40^{\circ}$ if the angle between wo 30 N forces always remain 50°.

Fig. 1.1
(C) A homogeneous wire AB is bent into the shape shown in figure 1.2. Determine the centroid of bent up wire. The radius of circle is 200 mm .

Q.2) (A) State and explain Varignon's Priciple.
(B) Determine reactions at support ' A ' and ' B ' for the bracket $A C B$ supporting 330 N force as shous 1 ig figure 2.1.

Fig. 2.1
(C) A force ' P ' applied at ' B ' and a block attached at ' C ' maintain cable ABCD in the position shown. Knowing that ' P ' has magnitude of 1320 N determine :
(1) Reaction at ' A '
(2) Mass ' m ' of the block
(3) Tension in each portion of the cable. (Refer figwre 2.2)

Q.3) (A) Determine the forces in the members $\mathrm{AB}, \mathrm{BF}, \mathrm{EF}$ and CD of the truss shown in figre 3.1 . Also state whether the members are tension or compression.

Fig. 3.1
P.T.O.
(B) For the cantilever, determine range of values of force ' P ' for which the magnitude of the fixing moment at ' A ' dose not exceed $5000 \mathrm{~N} / \mathrm{m}$. (Refer figure 3.2)

Q.4) (A) Referring to figure 4.1, calculate the ' P ' required to just raise the block ' B ' of weight 1000 N The wedge may be assumed of negligible weight. Assume cgefficent of friction between block and wedge 0.3 and at a 0.2 .

Fig. 4.1

(B) Determine the Romponents of the reactions at ' A ' and ' D ' when a force of 24 N directed vertically downword is applied at ' B '.

[3661]-18

$$
\uparrow-255 \mathrm{~mm} \rightarrow \mid
$$

Fig. 4.2
$\uparrow-255 \mathrm{~mm} \rightarrow \mid$
Q.5) (A) A square foundation mat supports the four column loads as shown in figure 5.1. Determine the magnitude and point of application of the resultant of the four loads.

Fig. 5.1
(B) For the beam ABCDE find reactions at upport using virtual work method. Refer figure 5.2.
Q.6) (A) A 2.4 m long boom is by a ball-and-socket joint at ' C ' and by two cables AD and AE. Determine the tension in each cable. (Refere figure 6.1)

Fig. 6.1
(B) Using method of virtual work, determine angle ' θ ' to maintain the equilibrium for the mechanism shown in figure 6.2. Take $\mathrm{W}_{\mathrm{A}}=100 \mathrm{~N}$ and $\mathrm{W}_{\mathrm{B}}=150 \mathrm{~N}$.

SECTION - II
Q.7) (A) Starting from first principle, obtain equatons of motion for uniformly accelerated rectilinear imption.
(B) A particle moves along a horizon ath such that its acceleration is given by $\mathrm{a}=(8-4 \mathrm{t}) \mathrm{m} / \mathrm{s}^{2}$ Detemine distance travelled by particle during $\mathrm{t}=0$ s to $\mathrm{t}=3 \mathrm{~s}$. Also draw $\mathrm{a}-\mathrm{t}$ diagram and $\mathrm{v}-\mathrm{t}$ diagram only.
(C) The 100 kg crate is sybiacted to the action of two forces as shown in figure 7.1. is originally at rest, determine the distance, it slides in arder to attain speed of $10 \mathrm{~m} / \mathrm{s}$. The kinetic coefficient of fricion between crate and surface is 0.2 .

Fig. 7.1
Q.8) (A) A car travels along a straight line with velocity described by the $\mathrm{v}-\mathrm{t}$ diagram shown in figure 8.1. Determine the total distance the car travels until it stops when $\mathrm{t}=50$ s. Also plot a - t diagram.

Fig. 8.1
(B) The 50 N ball is projected yertion from the tube by spring action as shown in figure 8.2 otermine how far the spring must be compressed to project the drom compressed position to a height of 2.4 m at which pint , it has velocity $1.8 \mathrm{~m} / \mathrm{s}$. Assume $K=5000 \mathrm{~N} / \mathrm{m}$.

Fig. 8.2
(C) The system shown in figure 8.3 is released from rest. Find -
(1) Tension in string
(2) Relative acceleration of 'A' w.r.t. ' B ' at $t=2 s$. Assume $\mu_{\mathrm{k}}=0.2$.
Q.9) (A) The y - co-ordinate of a particle incurvilinear motion is given by $y=\left(4 t^{3}-3 t\right) \mathrm{m}$. Also e article has an acceleration in x-direction given by $a_{x}=(124) \mathrm{m} / \mathrm{s}^{2}$. If velocity of particle in x-direction is $4 \mathrm{~m} / \mathrm{s}$ at $\mathrm{t} \geq 0$, calculate tangential and normal componants of accelerfir) at $t=1 \mathrm{~s}$.
(B) A bob of 1.5 m pend lum aescribes an arc of a circle in a vertical plane. When the of cord is 35° with vertical, the tension in the cord is 2.5 times the weight of bob. Find velocity and acceleration of the bob in this position. (Refer figure 9.1)

Fig. 9.1

OR

Q.10) (A) Derive equation of path followed by projectile when projected on horizontal plane with velocity ' u ' m / s and angle of projection ' α '. A projectile is fired with speed $150 \mathrm{~m} / \mathrm{s}$. from a gun elevated at angle 60° with plane $A B$ as shown in figure 10.1. Determine the point where it strikes the plane AB whose equation is $y=0.176 x$.

Fig. 10.1
(B) Two blocks A and B having same mass ' m '. The block ' A ' is moving to right with a speed 3.60s when it collides with block ' B ' which is at rest. Determin/bow far block B will slide before coming to stop. Assume $\mu_{\mathrm{k}} 0$ and $\mathrm{e}=0.6$. Neglect size of blocks.
Q.11)(A) Two blocks of masses 0 gand 25 kg are connected by a light in extensible string whic passes over 25 cm diameter pulley of 2.5 kg mass as show, in figure 11.1. Neglecting friction, find acceleration of the stem and tensions in the string when the masses are reled from rest. Assume radius gyration of pulley equal to its

Fig. 11.1
(B) An angular acceleration $\alpha=\left(0.4 t^{2}+0.6\right) \mathrm{rad} / \mathrm{s}^{2}$ is imparted to a disc of 0.15 m radius by a motor. If initial angular velocity of disc is $5 \mathrm{rad} / \mathrm{s}$, find velocity and acceleration of block ' B ' at time $\mathrm{t}=1.5 \mathrm{~s}$ (Refer figure 11.2).

Q.12)(A) At the instant shown figure 12.1, the rod $A B$ is rotating clockwise at $2.5 \mathrm{rad} / \mathrm{s}$. If emd ' C ' of the rod $B C$ is force to move on horizontal surface, on pute angular velocity of rod BC and velocity of its end point 'C’.

Fig. 12.1
(B) A thin uniform bar of mass 50 kg and length 1 m is suspended by two vertical inextensible strings. If the right hand string 'BD' is cut, find angular acceleration of bar and tension induced in the left string AC (Refer figure 12.2).

