Electronics - 2010

M.Sc. Electronics

1.	The curr	ent flowing $3K\Omega$ resistance in the	circuit	t given in Figure (1) will be:
	(a)	10 mA 2 kg	Qhm	
	(b)	7 mA	\	
	(c)	4 mA = 20V		₹9V ₹ 3k Ohm
	(d)	3 mA		
			Fig	gure (1)
2.	The valu	e of h, and h, for the circuit shown	in Fig	gure (2) respectively are:
	(a)	10 ohm, -0.2 20 Ohm	2	20 Ohm
	(b)	20 ohm, -0.4	_~	M + 1 +
	(c)	30 ohm, -0.5 V	200	Ohm $\begin{cases} \frac{1_2}{20 \text{ Ohm}} \\ \text{V}, \end{cases}$
	(d)	40 ohm, -1.0	200	20 Onin 12
			Fig	gure (2)
3.	A p-n ju	nction diode is a	8	0.00
		linear device	(b)	passive device
	(c)	unilateral device	(d)	active linear device
4.	Zener br	eakdown in a p-n junction results	due to	o:
	(a)	impact ionization	(b)	rupture of covalent bonds
	(c)	thermal instability	(d)	barrier lowering
5.	The de a	nd ac load line of a transistor:		
	(a)	intersect with each other	(b)	have positive slope
	(c)	are parallel to each other	(d)	are parallel to voltage axis
6.	Identify	the false statement. The common of	collecto	tor amplifier offers:
	(a)	low output impedance	(b)	high voltage gain
	(c)	high input impedance	(d)	high current gain
7.	In case o	of MOSFET the voltage at which	the dra	ain current saturates is known a
		punch-through voltage	(b)	breakdown voltage
	(c)	pinch-off voltage	(d)	threshold voltage
8.	Which	of the following is not possible to f	abricat	ate in IC technology?
	(a)	Resistor		(b) Capacitor
	(c)	Diode		(d) Inductor

 The value of the resistance R for maximum power transfer in the network shown in Figure (3) is:

 The circuit shown in Figure (4a) has the Norton equivalent circuit shown in Figure (4b). The value of I and R respectively will be:

- 11. The energy stored in a capacitor at any instant is given by :
 - (a) one half of the product of the capacitance and the square of the voltage across it at that instant
 - (b) the product of the capacitance and the square of the voltage across it at that instant
 - (c) one half of the product of the capacitance and the voltage across it at that instant
 - (d) the product of the capacitance and the voltage across it at that instant
- 12. The power factor is given by:
 - (a) peak power times 0.707
 - (b) the ratio of the true power to apparent power
 - (c) sine of the phase difference between voltage V and current I
 - (d) cos of the phase angle between true power and apparent power
- 13. A power amplifier has gain of 20dB and an input voltage level of 2mV. Assuming that the input and output impedances are the same. The voltage level at the amplifier output will be:
 - (a) 5 mV

(b) 10 mV

(c) 20 mV

(d) 40 mV

14.	(s+b)	is the transfer function that	realizes the cr	naracteristics of a :				
	(a)	high pass filter	(b)	band pass filter				
	(c)	band reject filter	(d)	low pass filter				
15.	When I	011, is multiplied by 101, t	he result will I	ne:				
	(a)	111101	(b)	111011				
	(c)	110111	(d)	111110				
16.	A two in	put XOR gate has inputs	1 and B, the or	tput of the gate is given by:				
	(a)	AB+AB	(b)	$\overline{A}B + AB$				
	(c)	A(A+B)	(d)	A B				
17.	The number of inputs and outputs in a full adder respectively are:							
	(a)	3 and 2	(b)	3 and 3				
	(c)	2 and 2	(d)	2 and 1				
18.	The logi	cal expression A + AB on s	implification	reduces to :				
	(a)	AB	(b)	A				
	(c)	A + B	(d)	В				
19.	Identify	the false statement from the	following:					
	(a)	ECL gate do not saturate						
	(b)	Complementary outputs	are available v	vith ECL gate				
	(c)		ECL logic gat	es is low relative to the other logic				
		families						
	(d)	Capacitive loading limits	the fan out in	ECL gate				
20.	The gray	code of the binary number	er 101010 ₂ is:					
	(a)	010101,	(b)	010110,				
	(c)	111011,	(d)	111111,				
21.	The cha	racteristic values of power	dissipation an	d propagation delay time for Low				
	power S	chottky TTL devices are re	espectively:					
	(a)	10mW, 10ns	(b)	15mW, 6ns				
	(c)	2mW, 10ns	(d)	100mW, 35ns				

22.	With an RS latch a high S and a low R sets its output to, and a low S and							
	high R s	ets its output to						
	(a)	0, 0	(b)	1, 0				
	(c)	0, 1	(d)	1, 1				
23.	Nnumb	er of flip-flops connec	ated in series divide	the clock frequency by a factor of :				
	(a)	2 ^N	(b)	2 ^{N-1}				
	(c)	2 ^{N+1}	(d)	N				
24.	A mod-	10 counter can divide	the clock frequenc	y by a factor of:				
	(a)	16	(b)	10				
	(c)	4	(d)	2				
25.	The maximum number of memory locations that an address bus with 16 bits can							
	access is:							
	(a)	16000	(b)	32536				
	(c)	65536	(d)	60536				
26.	The 815	6 is a 2,048 bit static	RAM with 256 wo	ords of 8 bits each. The number of				
	address	lines this RAM has:						
	(a)	256	(b)	32				
	(c)	16	(d)	8				
27.	Identify	the correct statement	from the following:					
	(a)	(a) It is much simpler to work with dynamic RAMs than static RAMs with						
		regard to design complexity of the RAM chips						
	(b)	(b) The static RAM contains more memory cells than dynamic RAM of the same physical size						
	(c)	The dynamic RAM	need to refresh the	memory every few milliseconds				
				SFET and capacitor are required.				
28.	The Boo	olean expression (AB)	(\overline{AB}) on simplifica	tion reduces to :				
		A + B	The state of the s	$A \oplus B$				
	(c)	AB	(d)	A(A+B)				

29. The output of the circuit shown in Fig (5) will be given by:

- (a) Y = A + B
- (b) Y = A B
- (c) $Y = A \oplus B$
- (d) $Y = \overline{A} + \overline{B}$

30. Adding inverters to the inputs of an AND gate produces ;

- (a) OR function
- (b) NOR function
- (c) Exclusive-OR function
- (d) XNOR function

31. Identify the false statement from the following:

- (a) ECL gate usually have complementary outputs
- (b) ECL gate has higher power requirements
- (c) ECL gate has higher noise margins than that of TTL
- (d) High speed operation is not possible in case of ECL gates because the transistors saturate in ECL gates.

32. The output Y of the circuit shown in Fig. (6) is given by:

- (a) Y = ABC
- (b) $Y = \overline{ABC}$
- (c) Y = ABC
- (d) Y = ABC

33. Ones complement of a binary number is found by:

- changing all zeros of the number to ones and all zeros of the number to zeros then adding 1 to the resultant number
- (b) changing all zeros of the number to ones and all ones of the number to
- (c) changing only all zeros of the number to ones
- (d) changing only all ones of the number to zeros

34. The number of restart instructions in 8085 μP is:

(a) 8

(b) 5

(c) 4

(d) 1

On exect LX IN2 MC AD ST/ HL3	tents of the memory location	(d)	Pins 6 to 10 Pins 14 to 18		
LX INX MC AD ST/ HLX The con (a)	I H, !FFFH K H DV A, H I 10H A 1000H T tents of the memory location	mme:			
LX INX MC AD ST/ HLX The con (a)	I H, !FFFH K H DV A, H I 10H A 1000H T tents of the memory location				
MC AD STA HLT The con (a)	X H DV A, H I 10H A 1000H T tents of the memory location	1000H will			
AD STA HLI The con (a)	OV A, H 110H A 1000H T tents of the memory location	1000H will			
AD STA HLT The con (a)	110H A 1000H F tents of the memory location	1000H will			
STA HLI The con (a)	A 1000H T tents of the memory location	1000H will			
The con (a)	tents of the memory location	1000H will			
The con	tents of the memory location	1000H will			
(a)		1000H will	1		
	E E				
(c)	**		10 _H		
	30 _H	(d)	2F _H		
37. The signals carried by pins 29 and 33 of the 8085 μP respectively					
(a)	$\overline{WR}, \overline{RD}$		HOLD, HLDA		
(c)	S_{o} , S_{I}	(d)	RESETN, CLK		
If the current amplification factor or of a transistor is 0.00 shows a second					
factor β of the transistor will be:					
		(b)	49		
(c)	79				
For a con	nmon emitter configuration	he collecto	rourrent I for a given base over		
I _B is given by:					
(a)	$I_C = \beta I_B + I_{CBO}$	(b)	$I_{\rm C} = \beta I_{\rm B} + (1 - I_{\rm CBO})$		
(c)	$I_{C} = \beta I_{B} + (1 + \beta)I_{CBO}$		$I_{C} = \beta I_{B} + \beta I_{CBO}$		
A transis	tor having h-parameter h =	5000Ω h =	=1.6×10 ⁻⁴ h = 56 h =50u A/3		
The curre	ent gain of the CE amplifier w	rith load res	istance of 50KO will be		
			-16		
(c)	-32	-	- 64		
The decil	pel equivalent of power gain	00 is :			
			20dB		
	200700				
	(a) (c) If the cur factor \(\beta \) (a) (c) For a con (a) (c) A transis The curre (a) (c) The decit (a)	(a) \overline{WR} , \overline{RD} (c) S_0 , S_1 If the current amplification factor α of factor β of the transistor will be: (a) 9 (c) 79 For a common emitter configuration, I_B is given by: (a) $I_C = \beta I_B + I_{CBO}$ (c) $I_C = \beta I_B + (1 + \beta)I_{CBO}$ A transistor having h-parameter I_{IB} = The current gain of the CE amplifier w (a) $I_C = \beta I_B + (1 + \beta)I_{CBO}$	(a) $\overline{WR}, \overline{RD}$ (b) (c) $S_{or} S_{f}$ (d) If the current amplification factor α of a transisto factor β of the transistor will be: (a) 9 (b) (c) 79 (d) For a common emitter configuration, the collector I_{B} is given by: (a) $I_{C} = \beta I_{B} + I_{CBO}$ (b) (c) $I_{C} = \beta I_{B} + (1 + \beta)I_{CBO}$ (d) A transistor having h-parameter $h_{Ie} = 5000\Omega$, h_{re} The current gain of the CE amplifier with load res (a) -8 (b) (b) The decibel equivalent of power gain 100 is: (a) $10 dB$ (b)		

35. The input pins of 8085 μP chip for the interrupt signal are from :

- 42. Identify the false statement from the following:
 - (a) In a Darlington amplifier configuration the output of one amplifier is coupled into the input of the next one by directly connecting emitter of one transistor to the base of the other transistor
 - (b) Darlington amplifier provides excellent characteristics of high input impedance and low output impedance
 - (c) Darlington amplifier provides low current gain
 - (d) Darlington amplifier is often used in high gain amplifiers because of its high current gain
- 43. How many different sets of input conditions of A, B, and C will produce a high output in the circuit shown in Figure (7)?
 - (a) 10
 - (b) 8
 - (c) 6
 - (d) 4

Figure (7)

- 44. In class-A amplifier when a transistor is driven from the edge of saturation region to cutoff, then for every 1W output power the power consumed internally is:
 - (a) 1 W

(b) 2 W

(c) 3 W

- (d) 4 W
- 45. The trans-conductance of a MOSFET is:
 - (a) independent of the drain current
 - (b) directly proportional to the drain current
 - (c) directly proportional to square root of the drain current
 - (d) inversely proportional to square root of the drain current
- 46. Unijunction transistor is a:
 - (a) variable capacitance device
- (b) relaxation oscillator

8

- (c) current controlled device
- (d) voltage controlled device

- 47. Identify the correct statement from the following. In an RC coupled amplifier:
 - the low frequency response is affected by junction capacitances and high frequency response is affected by coupling capacitor
 - (b) only high frequency response is affected by coupling and bypass capacitors
 - (c) the low frequency response is affected by coupling and bypass capacitors
 - (d) the coupling capacitor do not affect the frequency
- 48. Class-B push-pull amplifiers there exists
 - (a) intermodulation distortion
 - (b) cross-over distortion
 - (c) even harmonic distortion
 - (d) neither even harmonic nor odd harmonic distortion
- 49. The maximum theoretical efficiency of an amplifier in class-B operation is
 - (a) 78.5%

(b) 50.5 %

(c) 40.5 %

- (d) 25.5 %
- If the emitter resistance of a common emitter amplifier is not bypassed by a capacitor the emitter resistance provides a:
 - (a) Negative voltage feedback
- (b) Current series feedback
- (c) Voltage shunt feedback
- (d) Positive current feedback
- 51. The current I_D in circuit shown in Figure (8) will be equal to:
 - (a) 5mA
 - (b) 10mA
 - (c) 15mA
 - (d) 20mA

- 52. The circuit shown in Figure (9) is a:
 - (a) Logarithmic amplifier
 - (b) Differentiator
 - (c) Antilogarithmic amplifier
 - (d) Integrator

	If the internal gain of an amplifier is 300 and feedback fraction β is 0.03, the gain of the amplifier is:					
	(a)	3	(b)	30		
	(c)	90	(d)	100		
54.	transistor	nd C _{CB} represent the base-em respectively. If the transistor is e gain A, the input capacitance C	imployed in	n common emitter amplifier		
	(c)	$C_{in} = C_{BE} + AC_{CB}$ $C_{in} = C_{BE} + (1 + A)C_{CB}$	(d)	$C_{in} = C_{CB} + (1+A)C_{BE}$		
55.	Which of the following pin pairs in 741 Op Amp IC are for power supply connection					
		2 and 3		6 and 8		
	(c)	I and 5	(d)	7 and 4		
56.	Identify the false statement. The ideal Op Amp would exhibit:					
	(a)	Infinite voltage gain				
	(b)	Infinite input resistance				
	(c)	Zero output voltage when in	put voltage	e is zero		
	(d)	Infinite output resistance				
57.	. The minimum quantity that an instrument can measure is known as:					
	(a)	Precision	(b)	Resolution		
	(c)	Accuracy	(d)	Sensitivity		
	. The relative limiting error of product of two terms is equal to the :					
58.						
58.		sum of the of the relative err				
58.	(a)		or of the to	erms		
58.	(a) (b)	sum of the of the relative err	or of the to	erms		
58.	(a) (b) (c)	sum of the of the relative errodifference of the relative error	or of the to or of the te of the term	erms rms		
	(a) (b) (c) (d) In a diff	sum of the of the relative error difference of the relative error division of the relative error	or of the te or of the tern of the tern of the tern ee mode ga	erms arms as $\sin A_{\rm vD} = 1000$ and CMMR=		
	(a) (b) (c) (d) In a diff the inpuvoltage	sum of the of the relative error difference of the relative error division of the relative error product of the relative error erential amplifier the difference ats V ₁ and V ₂ of the amplifier at	or of the to or of the term of the term of the term of the term the mode ga	erms arms as $\sin A_{\rm vD} = 1000$ and CMMR=		

- 60. A moving coil galvanometer is converted into a DC ammeter by connecting :
 - (a) a capacitor of appropriate capacitance across the galvanometer
 - (b) a resistor of appropriate resistance across the galvanometer
 - (c) a resistor of appropriate resistance in series with galvanometer
 - (d) an inductor of appropriate inductance across the galvanometer

