Directorate of Correspondence Course First Year B.Sc. Degree Examinations August /September 2010

(New Scheme)

MATHEMATICS

Paper - I

Time: 3 hrs.

[Max.Marks: 90

Note: Answer any SIX full questions of the following choosing at least ONE from each Part.

PART - A

A. Answer the following.

2 Marks

- 1. a) i) Find $\phi(1026)$
 - ii) Find the greatest common divisor of 592 and 252.

2 Marks

- b) Prove that the relation of congruence defined on the set Z of integers is an equivalence relation.

 5 Marks
- Find the remainder when 159⁷⁶⁵⁴ is divided by 23.

6 Marks

2. a) i) If $A = \{1, 2\}$ $B = \{6, 6\}$ find $A \times B$ and $B \times A$.

2 Marks

- ii) Let $f: R \to R$ and $g: R \to R$ defined by f(x) = 4x-1 and $g(x) = \cos x$. Show that $f \circ g \neq g \circ f$.
- b) Prove that the composition of two bijective functions is also bijective.

5 Marks

c) If $f: R \longrightarrow R$ and $g: R \longrightarrow R$ are defined by f(x) = 2x - 1 and g(x) = 5 - 3x. Verify $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ 6 Marks

PART - B

- 3. a) i) Define continuity of a function at x = a and give an example. 2 Marks
 - ii) If y = cos(ax + b) find y_n .

2 Marks

- b) If $y = (x + \sqrt{x^2 + 1})^m$ Prove that $(x^2 + 1)y_2 + xy_1 m^2y = 0$ 5 Marks
- c) If $cos^{-1}(y/b) = log(x/n)^n$. Prove that $x^2y_{n+2} + (2n+1)xy_{n+1} + 2n^2y_n = 0$ 6 Marks

Contd.... 2

- 4. a) i) Find the angle between the radius vector and the tangent for the curve $r=ae^{\theta cot\alpha}$ where α is a constant.
 - ii) Calculate $\frac{ds}{dx}$ for the curve $y = c \cosh(x/c)$

2 Marks

b) Show that the following curves intersect orthogonally

 $r=a\ cosec^2(\theta/2)$ and $r=b\ sec^2(\theta/2)$

5 Marks

c) Prove that the radius of curvature for the curve $r=f(\theta)$ in polar form is $\rho=\frac{(r^2+\mathring{r}^2)^{3/2}}{r^2+2\mathring{r}^2-r\mathring{r}}$

6 Marks

PART - C

- 5. a) i) If the planes x y z + 1 = 0 and 2x ay 2z + 3 = 0 are parallel find 'a'.
 - ii) Find the equation of the plane passing through (-2,1,3) and parallel to the plane 5x 3y + 5z + 3 = 0.
 - b) Find the equation to a plane passing through the points (1,1,0), (1,2,1) and (-2,2,-1).
 - c) Determine the mutual positions of the lines

 $L_1: x = 1 - t, \ y = 2 + t, \ z = 2t$

 $L_2: x=3-2s, \ y=4+2s, \ z=6+4s$

6 Marks

- 6. a) i) Find the equation of the sphere whose centre is (2, -1, 3) and radius is 5 units.
 - ii) Find the asymptotes parallel to coordinate axes for the curve $y^2(x^2-a^2)=x$.

2 Marks

b) Find the position and nature of the double points of the curve $(x-1)(x-2)^2 - y^2 = 0$.

5 Marks

c) Find the surface area of the curve $r = a(1 + cos\theta)$

6 Marks

PART - D

7. a) i) If A and B be symmetric matrices (or skew symmetric matrices) of the same order. Then Prove that A + B is also symmetric matrices. (or skew symmetric matrices)
 2 Marks

ii) Define a rank of matrix.

2 Marks

b) Find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 6 & 4 \\ 0 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix}$$
 using elementary grow operations.

5 Marks

c) Solve completely the following system of equations for consistency.

$$x + 2y + 3z = 0$$

$$2x + 3y + 4z = 0$$

6 Marks

$$7x + 13y + 19z = 0$$

8. a) i) Evaluate $\int_{0}^{1} xe^{x} dx$

2 Marks

ii) Evaluate $\int e^x \frac{(x-1)}{(x+1)^2} dx$

2 Marks

b) Evaluate $\int \frac{x}{(x-1)(x^2+4)} dx$

5 Marks

c) If $I_n = \int_0^{\frac{\pi}{4}} tan^n x \ dx$. Then prove that $I_n + I_{n-2} = \frac{1}{n-1}$ where n is a

+ve integer and hence evaluate $\int_{0}^{\frac{\pi}{4}} tan^{4}x \ dx$.

6 Marks

