ROLL NO.

DipIETE - ET/CS (NEW SCHEME) - Code: DE51 / DC51

Subject: ENGINEERING MATHEMATICS - I

Time: 3 Hours

DECEMBER 2011

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to $\mathbf{Q} .1$ must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q. 1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. $\underset{x \rightarrow 0}{ } \operatorname{lt}_{x \rightarrow 2} \frac{\sin 5 x+2 x}{3 x+\sin 3 x}$ is :
(A) $\frac{7}{6}$
(B) $\frac{6}{7}$
(C) $\frac{5}{6}$
(D) $\frac{6}{5}$
b. If $y=\frac{x^{3} \cos x}{\sin x}$, then $\frac{d y}{d x}$ is
(A) $x^{3} \operatorname{cosec}^{2} x+3 x^{2} \cot x$
(B) $3 x^{3} \operatorname{cosec}^{2} x-x^{2} \cot x$
(C) $-x^{3} \operatorname{cosec}^{2} x-3 x^{2} \cot x$
(D) $-x^{3} \operatorname{cosec}^{2} x+3 x^{2} \cot x$
c. $\int \frac{x^{2}}{a^{6}-x^{6}} d x$ is
(A) $\frac{1}{6 a^{3}} \log \left|\frac{a^{3}+x^{3}}{x^{3}-a^{3}}\right|+C$
(B) $\frac{1}{6 a^{3}} \log \left|\frac{a^{3}+x^{3}}{a^{3}-x^{3}}\right|+C$
(C) $\frac{1}{6 a^{3}} \log \left|\frac{a^{3}-x^{3}}{a^{3}+x^{3}}\right|+C$
(D) $\frac{1}{6 a^{3}}\left|\frac{x^{3}-a^{3}}{x^{3}+a^{3}}\right|+C$
d. If $X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right]$ and $X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$, then $X \& Y$ is
(A) $\mathrm{X}=\left[\begin{array}{ll}5 & 0 \\ 1 & 4\end{array}\right], \mathrm{Y}=\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$
(B) $\mathrm{X}=\left[\begin{array}{ll}5 & 1 \\ 4 & 0\end{array}\right], \mathrm{Y}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
(C) $\mathrm{X}=\left[\begin{array}{ll}0 & 5 \\ 1 & 4\end{array}\right], \mathrm{Y}=\left[\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right]$
(D) $\mathrm{X}=\left[\begin{array}{ll}4 & 1 \\ 0 & 5\end{array}\right], \mathrm{Y}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$

ROLL NO.

e. If $\Delta=\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|$ and ω is a cube root of unity, then the value of Δ is
(A) 1
(B) 3
(C) 0
(D) 2
f. The coefficient of x^{5} in the expansion of $\left(x+\frac{1}{x^{3}}\right)^{17}$ is
(A) 630
(B) 650
(C) 670
(D) 680
g. The solution of the differential equation $\frac{d y}{d x}=e^{y+x}+e^{y-x}$ is
(A) $\mathrm{y}=\mathrm{e}^{\mathrm{x}}(\mathrm{x}+1)$
(B) $\mathrm{y}=\mathrm{e}^{\mathrm{x}}(\mathrm{x}+1)+1$
(C) $y=e^{x}(x-1)+1$
(D) none of these
h. If $A+B=45^{\circ}$, then the value of $(\cot A-1)(\cot B-1)$ is
(A) 1
(B) -2
(C) 2
(D) -1
i. The area of the quadrilateral whose vertices, taken in order, are $(1,1),(3,4)$, $(5,-2) \&(4,-7)$ is
(A) $\frac{43}{2}$ sq.units
(B) $\frac{41}{2}$ sq.units
(C) $\frac{45}{2}$ sq.units
(D) $\frac{47}{2}$ sq.units
j. Three consecutive vertices of a parallelogram ABCD are $\mathrm{A}(3,0), \mathrm{B}(5,2)$, $C(-2,6)$. Then the fourth vertex D is
(A) $(4,-4)$
(B) $(4,4)$
(C) $(3,-4)$
(D) $(-4,4)$

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. If $y=x^{\left(x^{x}\right)}$, then find $\frac{d y}{d x}$
b. Find the equations of the tangent and the normal to the curve $y^{2}=4 a x$ at $\left(a t^{2}, 2 a t\right)$.
Q. 3 a. $\int e^{2 x} \sin 5 x d x$
b. $\int_{1}^{3} \frac{1}{(x+1)(x+2)(x+3)} d x$
(8)
Q. 4 a. Show that $A=\left[\begin{array}{cc}5 & 3 \\ -1 & -2\end{array}\right]$ satisfies the equation $x^{2}-3 x-7=0$. Thus, find A^{-1}.
b. Whether the system is consistent or inconsistent also find the solution, by Cramer's Rule, if exists

$$
\begin{align*}
& x-y+3 z=6 \\
& x+3 y-3 z=-4 \\
& 5 x+3 y+3 z=10 \tag{8}
\end{align*}
$$

Q. 5 a. Solve $\left(x^{2}-y^{2}\right) d x=2 x y d y$
b. Solve $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$
Q. 6 a. Show that the middle term in the expansion of $(1+x)^{2 n}$ is $\frac{1.3 \cdot 5 \ldots .(2 n-1)}{n!} 2^{n} \cdot x^{n}$
b. Find four numbers in A.P. whose sum is 20 and the sum of whose squares is 120.
Q. 7 a. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angles of a triangle, then prove that :
$\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}=4 \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}$
b. Prove that
$\sin ^{2} A+\sin ^{2}\left(60^{\circ}+A\right)+\sin ^{2}\left(60^{\circ}-A\right)=\frac{3}{2}$
Q. 8 a. Find the equation of a straight line passing through the point $(3,4)$ and inclined to positive direction of x-axis at an angle of $\frac{3 \pi}{4}$. Find also the coordinates of two points on it, on opposite side of $(3,4)$ and at a distance of $\sqrt{2}$ from it.
b. Find the distance between the lines
$9 x+40 y-20=0$ and $9 x+40 y+21=0$
Q. 9 a. Find the equation of the circle of radius 5 whose centre lies on y - axis passes through (3, 2).
b. Find the vertex, focus and directrix of the parabola $4 y^{2}+12 x-12 y+39=0$

