## PERCENTAGE

A percentage is a ratio expressed in terms of a unit being 100. A percentage is usually denoted by the symbol "\%"

- To express $a \%$ as a fraction, divide it by $100 \Rightarrow a \%=a / 100$
- To express a fraction as $\%$, multiply it by $100 \Rightarrow a / b=[(a / b) \times 100] \%$
- $x \%$ of $y$ is given by $\frac{x}{100} y$


## Conversion of fractions to percentage:

$$
\begin{array}{lllll}
\frac{1}{1}=100 \% & \frac{1}{2}=50 \% & \frac{1}{3}=33.33 \% & \frac{1}{4}=25 \% & \frac{1}{5}=20 \% \\
\frac{1}{7}=14.28 \% & \frac{1}{8}=12.5 \% & \frac{1}{9}=11.1 \% & \frac{1}{10}=10 \% & \frac{1}{11}=9.09 \% \\
\frac{1}{12}=8.33 \%
\end{array}
$$

## Percentage Increase/Decrease

- $\quad X$ increased by $10 \%$ is given by $x+0.1 x=1.1 x$

Similarly $20 \%$ more of $x=x+0.2 x=1.2 x$
$10 \%$ less of $x=x-0.1 x=0.9 x$
$20 \%$ less of $x=x-0.2 x=0.8 x$

- If $x$ is $\mathbf{n}$ times of $y$, it means $x$ is $(n-1) \times 100 \%$ more than $y$.
- Percentage Increase $=[$ Increase $/$ Original value $] \times 100 \%$
- Percentage Decrease $=[$ Decrease / Original value $] \times 100 \%$
- Percentage Change $=[$ Change / Original value $] \times 100 \%$
- If $A$ is $x \%$ more / less than $B$, then $B$ is $\frac{100 x}{100 \pm x} \%$.less/more than $A$.

If any number (quantity) is changed (increased/decreased) by $\mathrm{p} \%$, then

$$
\text { New quantity }=\text { Original quantity } \times\left(\frac{100+p^{*}}{100}\right)
$$

* $p$ is $(-)$ ve, when the original quantity is reduced by $p \%$.

$$
\text { New value } \quad=\text { original value }+ \text { increase }
$$

Or New value = original value - decrease

## Percentage change in product of two quantities

Consider a product of two quantities $\mathrm{A}=\mathrm{a} \times \mathrm{b}$
If $a$ and $b$ change (increase or decrease) by a certain percentage say $x \& y$ respectively, then the overall \%age change in their product is given by the formula:

$$
x+y+\frac{x y}{100}
$$

This formula also holds true if there are successive changes as in the case of population increase or decrease. But when there are either more than 2 successive changes or there is a product of more than 2 quantities as in the case of volume, then we have to apply the same formula twice.

This formula can be used for following questions:

- If $A$ is successively increased by $X \%$ and $Y \%$, find the percentage increase
- If there is successive discount of $X \%$ and $Y \%$, find the total discount.
- If there is $X \%$ increase and $y \%$ decrease, find the total change is $X-Y-\frac{X Y}{100}$
- If the sides of a rectangle increases by $X \%$ and $Y \%$, Find the percentage increase in its area


## Population Increase/Decrease

Let the present population of a town be " p " and let there be an increase/decrease at $\mathrm{X} \%$ per annum. Then
(i) Population after n years $=\mathrm{p}[1+(\mathrm{X} / 100)]^{\mathrm{n}}$
(ii) Population $n$ years ago $=p /[1+(X / 100)]^{n}$

## [ $X$ is positive if population is increasing annually and negative if decreasing]

## Income Comparison

(i) If A's income is r\% more than B's then B's income is $[r /(r+100)] \times 100 \%$ less than A's
(ii) If A's income is r\% less than B's then B's income is $[r /(100-r)] \times 100 \%$ more than A's

## Mixture problems:

If $x \%$ of a quantity is taken by the first person, $y \%$ of the remaining quantity is taken by the second person, and $z \%$ of the remaining is taken by the third person and if $A$ is left, then initial quantity was

$$
=\frac{A \times 100 \times 100 \times 100}{(100-x)(100-y)(100-z)}
$$

The same concept we can use, if we add something, then the initial quantity was

$$
=\frac{A \times 100 \times 100 \times 100}{(100+x)(100+y)(100+z)}
$$

## Profit, Loss and Discount

1. Gain or profit $=S . P-C . P$
2. Profit $\%=\frac{S . P-C . P}{C . P} \times 100 \quad$ (S.P. is sold price, C.P. is cost price)
3. Discount $=$ M.P $-S \cdot P \quad$ (M.P is marked price)
4. Discount $\%=\frac{M . P-S . P}{M . P} \times 100$
5. If the product is constant, and if one quantity increases / decreases by $x \%$, then the other quantity decreases / increases by $\frac{100 \mathrm{x}}{100 \pm \mathrm{x}} \%$.
6. If the price of an item increases by $x \%$, the consumption has to be reduced by $\frac{100}{100+x} \%$ to keep the expenditure constant.
7. If two articles are sold at the same price, and on the first one a shopkeeper makes a profit of $\mathrm{p} \%$ and on the other suffers a loss of $\mathrm{p} \%$, overall he will suffer a loss and it is given by

$$
\text { Loss }=\frac{\mathrm{p}^{2}}{100} \%
$$

