PERMUTATIONS & COMBINATIONS

Fundamental principle of Counting:

We have two principles of counting the "Sum rule" and the "Product rule".

Event A can happen in = m ways.

Event B can happen in = n ways.

Then, the chances of either (A or B) happening are given by $-\frac{1}{can \ occur \ in}$ m + n ways (Sum Rule)

The chances of both (A and B) happening simultaneously are given by $\xrightarrow{can occur in} m \times n$ ways (Product

Rule)

Concept of ⁿP_r and ⁿC_r:

 ${}^{n}P_{r} \rightarrow Number of arrangements of n different objects taken 'r' at a time$

 ${}^{n}C_{r} \rightarrow Number of selections of n different objects taken 'r' at a time.$

Formulae of Permutation:

1. Permutations of n different things taken 'r' at a time is denoted by "Pr and is given by

$$P_r = \frac{n!}{(n-r)!}$$

2. The total number of arrangements of n things taken 'r' at a time, in which a particular thing always occurs = ${}^{n-1}P_{r-1}$.

E.g. The number of ways in a basketball game in which 5 out of 8 selected players can play at different positions, such that the captain always plays at the centre position = ${}^{8-1}P_{5-1} = {}^{7}P_{4} = 210$.

3. The total number of permutations of n different things taken 'r' at a time in which a particular thing never occurs = ${}^{n-1}P_r$.

E.g. The number of ways in which we can form a 4 letter word from the letters of the word COMBINE such that the word never contains $B = \sqrt[7-1]{P_4} = \sqrt[6]{P_4} = \sqrt[3]{30}$

4. The number of arrangements when things are not all different such as arrangement of n things, when p of them are of one kind, q of another kind, r is still of another kind and so on, the total number of permutations is given by $\frac{n!}{(p! q! r!....)}$.

E.g. The total arrangements of the letters of the word "M A T H E M A T I C S" in which M, A and T are repeated twice respectively = $\frac{11!}{2!2!2!}$

5. The number of permutations of n different things taking 'r' at a time when each thing may be repeated any number of times in any permutations is given by $(n \times n \times n \times n \times n \times n \dots r \text{ times})$ i.e. \mathbf{n}^{r} ways.

E.g. The total numbers of ways in which 7 balls can be distributed amongst 9 persons (when any man can get any number of balls) = 9^7 ways.

Circular Permutations:

In linear permutation, we fill first place by n ways and next in (n - 1) ways and so on, but in circular arrangement we don't have any first place. So fix any object as a first place and arrange the rest (n - 1) objects around it. Hence, we have to arrange 1 less than the total number of things.

- i. Number of circular permutations of n things all taken at a time = (n 1)!
- **ii.** Number of circular permutations of n different things taking 'r' at a time $=\frac{{}^{n}P_{r}}{r}$.
- iii. If there is no difference between clockwise and anticlockwise arrangements, the total number of circular permutations of n things taking all at a time is $\frac{(n-1)!}{2}$ & the total number of circular permutations n

when taking 'r' at a time all will be $\frac{{}^{n}P_{r'}}{2t}$.

Formulae of Combination:

- 1. Number of combinations of n dissimilar things taken 'r' at a time is denoted by ⁿC_r & is given by
 - ${}^{n}\mathbf{C}_{r} = \frac{n!}{(n-r)!r!}$
- Number of combinations of n different things taken 'r' at a time in which 'p' particular things will always occur is ^{n-p}C_{r-p}

E.g. The number of ways a basketball team of 5 players chosen from 8 players, so that the captain be included in the team = ${}^{8-1}C_{5-1} = {}^{7}C_{4} = 35$

Number of combinations of n dissimilar things taken 'r' at a time in which 'p' particular things will never occur is ^{n-p}C_r

E.g. The number of ways a basketball team of 5 players chosen out of 10 players, such that the player named Saurav should not be included in the team $= {}^{10-1}C_5 = {}^9C_5 = 126$.

4. The number of ways in which (m + n) things can be divided into two groups containing m & n things respectively ${}^{(m+n)}C_n = \frac{(m+n)!}{m! n!} = {}^{(m+n)}C_m$.

- 5. If 2m things are to be divided into two groups, each containing m things, the number of ways = $\frac{(2m)!}{[2(m!)^2]}$.
- 6. The number of ways to divide n things into different groups, one containing p things, another q things &

so on is equal to $\frac{(p+q+r+...)!}{p!.q!.r!...}$ Where $\{n = p+q+r+...\}$

Distribution of Identical Objects:

The total number of ways of dividing n identical items among r persons, each of whom can receive 0, 1, 2, or more items (\leq n) is ^{n+r-1}**C**_{r-1}.

OR

The total number of ways of dividing n identical objects into r groups, if blank groups are allowed, is ${}^{n+r-1}C_{r-1}$.

Example:

How many non - negative integral solutions are possible for the given equation?

x + y + z = 16

<u>Hint:</u> Here, if we look out to the problem we will find 16 objects have to be distributed among 3 different persons (i.e. x, y, z).

Hence n = 16, r = 3 and total number of non – negative solutions = ${}^{16+3-1}C_{3-1} = {}^{18}C_2 = 153$.

Some important Results:

i. Number of lines with n points = ${}^{n}C_{2}$.

 \therefore For making a line exactly two points are required. So the number of ways in which we can choose two points out of n point is ${}^{n}C_{2}$.

Combination is used here because a line from A to B is the same as from B to A. So AB & BA are the same.

- (i) n lines can intersect at a maximum of ${}^{n}C_{2}$ points.
- (ii) Number of triangles with n points = ${}^{n}C_{3}$.
- (iii) Number of diagonals in n sided polygon $= {}^{n}C_{2} n$
- **ii.** The number of ways in which mn different items can be divided equally into m groups, each containing n objects and the order of the groups is *not important*, is

$$\left(\frac{(mn)!}{(n!)^m}\right)\frac{1}{m!}$$

iii. The number of ways in which mn different items can be divided equally into m groups, each containing n objects and the order of the groups is *important*, is

$$\left(\frac{(\mathrm{mn})!}{(\mathrm{n!})^{\mathrm{m}}}\right)\frac{1}{\mathrm{m!}} \times \mathrm{m!} = \frac{(\mathrm{mn})!}{(\mathrm{n!})^{\mathrm{m}}}$$

- iv. Total number of rectangles formed by **n** horizontal and **m** vertical lines in a plane = ${}^{m}C_{2} x {}^{n}C_{2}$.
- **v.** The total number of ways of dividing n identical items among r persons, each one of whom, can receive 0, 1, 2, or more items (\leq n) is ^{n + r 1}**C**_{r 1}.

OR

The total number of ways of dividing n identical objects into r groups, if blank groups are allowed, is $^{n+r}$ $^{-1}C_{r-1}$.

PROBABILITY

If there are n-elementary events associated with a random experiment and m of them are favorable to an event A, the probability of A happening is denoted by P (A) and is defined as the ratio m/n.

Probability of an event occurring = Number of favourable outcomes Number of all possible outcomes

Thus, P (A) = $\frac{m}{n}$.

Probability always lies between 0 and 1

a. Probability of a sure event is 1.

b. Probability for an impossible event is 0.

Clearly, $0 \le m \le n$, therefore $0 \le \frac{m}{n} \le 1$, so that $0 \le P(A) \le 1$

Since the number of cases in which the event A will not happen is n - m, therefore, if \overline{A} denotes not happening of A, then the probability P (\overline{A}) of not happening of A is given by

$$P\left(\overline{A}\right) = \frac{n-m}{n} = 1 - \frac{m}{n} = 1 - P(A)$$
 or $P(A) + P(\overline{A}) = 1$

Odd in favour and odd against:

If m is the favourable chances of an event and n be the total chances of the event,

the odds in favour of occurrence of the event \overline{A} are defined by $\mathbf{m} : (\mathbf{n} - \mathbf{m})$ i.e., $P(\overline{A}): P(\overline{A})$ and the odds against the occurrence of A are defined by $(\mathbf{n} - \mathbf{m}): \mathbf{m}$, i.e., $P(\overline{A}): P(\overline{A})$.

Mutually exclusive and inclusive events:

Two or more events are said to be **mutually exclusive if** these events cannot occur simultaneously. Two or more events are said to be **compatible**, if they can occur simultaneously.

Two events (A and B) are mutually exclusive, if the intersection of two events is null or they have no common element i.e. A $\cap B = \phi$. And are mutually inclusive, if they have atleast one of the elements in common i.e. A $\cap B \neq \phi$.

E.g.

In the above case events A and B are mutually exclusive but the events B and C are not mutually exclusive or disjoint since they may have common outcomes.

More precisely we can use the following formula for these two types of events.

1. If E and F two mutually exclusive events, the probability that either event E or event F will occur in a single trial is given by:

P(E or F) or P (E \cup B) = P(E) + P(F)

2. If the events are not mutually exclusive,

P(E or F) = P(E) + P(F) - P(E and F together)or

$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

Note: P (neither E nor F) = 1 - P(E or F).

Independent Events:

When two events, A and B are independent, the probability of both occurring is:

$$P(A \text{ and } B) = P(A \cap B) = P(A) \times P(B)$$

Example:

A coin is tossed and a single 6-sided dice is rolled. Find the probability of getting a head on the coin and a 3 on the dice.

Binomial Distribution:

If n trials are performed under the same condition and the probability of success in each trial is p, and q = 1 - p then the probability of exactly r successes in n trials is:

$$\mathbf{P}(\mathbf{r}) = {}^{n}\mathbf{C}_{r}\mathbf{p}^{r}\mathbf{q}^{n-r}$$

Example:

A dice is tossed 5 times. What is the probability that the number 5 shows up exactly thrice, on the dice?