PERMUTATIONS \& COMBINATIONS

Fundamental principle of Counting:

We have two principles of counting the "Sum rule" and the "Product rule".
Event A can happen in $\quad=\quad \mathrm{m}$ ways.

Event B can happen in $=\quad n$ ways:
Then, the chances of either (A or B) happening are given by $\xrightarrow[\text { can occur in }]{ } \mathrm{m}+\mathrm{n}$ ways (Sum Rule)
The chances of both $(A$ and B) happening simultaneously are given by $\xrightarrow[\text { can occur in }]{ } \mathrm{m} \times \mathrm{n}$ ways (Product

Rule)

Concept of ${ }^{n} \mathrm{P}_{\mathrm{r}}$ and ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$:

${ }^{n} P_{r} \rightarrow$ Number of arrangements of n different objects_taken ' r ' at a time
${ }^{n} C_{r} \rightarrow$ Number of selections of n different objects taken ' r ' at a time.

Formulae of Permutation:

1. Permutations of n different things taken'r at a time is denoted by ${ }^{n} P_{r}$ and is given by

$$
{ }^{n} \mathbf{P}_{\mathrm{r}}=\frac{\mathrm{n}!}{(\mathbf{n}-\mathrm{r})!}
$$

2. The total number of arrangements of n things -taken ' r ' at a time, in which a particular thing always occurs $={ }^{\mathrm{n}-1} \mathbf{P}_{\mathrm{r}-1}$.
E.g. The number of ways in a basketball game in which 5 out of 8 selected players can play at different positions, such that the captain always plays at the centre position $={ }^{8-1} P_{5-1}={ }^{7} P_{4}=210$.
3. The total number of permutations of n different things taken ' r ' at a time in which a particular thing never occurs $={ }^{n-1} P_{r}$.
E.g. The number of ways in which ween form 4 letter word from the letters of the word COMBINE such that the word never contains $B={ }^{17-1} \mathrm{P}_{4}={ }^{1}{ }^{6} \mathrm{P}_{4}=, 30$
4. The number of arrangements when things are not all different such as arrangement of n things, when p of them are of one kind, q of another kind, r is still of another kind and so on, the total number of permutations is given by $\frac{\mathrm{n}!}{(\mathrm{p}!\mathrm{q}!\mathrm{r}!\ldots \ldots)}$.
E.g. The total arrangements of the letters of the word "M A THEMATICS" in which M, A and T are repeated twice respectively $=\frac{11!}{2!2!2!}$
5. The number of permutations of n different things taking ' r ' at a time when each thing may be repeated any number of times in any permutations is given by $\left(n \times n \times n \times n \times n \ldots \ldots \ldots \ldots \ldots\right.$. times) i.e. n^{r} ways.
E.g. The total numbers of ways in which 7 balls can be distributed amongst 9 persons (when any man can get any number of balls) $=9^{7}$ ways.

Circular Permutations:

In linear permutation, we fill first place by n ways and next in ($n-1$) ways and so on, but in circular arrangement we don't have any first place. So fix any object as a first place and arrange the rest ($n-1$) objects around it. Hence, we have to arrange-1 less than the total number of things.
i. Number of circular permutations of n things all taken at a time $=(n-1)$!
ii. Number of circular permutations of n different things taking ' r ' at a time $=\frac{{ }^{n} P_{r}}{r}$.
iii. If there is no difference between clockwise and anticlockwise arrangements, the total number of circular permutations of n things taking all at a time is $\frac{(n-1)!}{2} \&$ the total number of circular permutations n when taking ' r ' at a time all will be $\frac{{ }^{n} \mathrm{P}_{\mathrm{r}^{\prime}} \text { '. }}{2 r}$.

Formulae of Combination:

1. Number of combinations of n dissimilar things taken ' r ' at a time is denoted by ${ }^{n} C_{r}$ \& is given by

$$
{ }^{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

2. Number of combinations of n different things taken ' r ' at a time in which ' p ' particular things will always occur is ${ }^{n-p} \mathbf{C}_{r-p}$
E.g. The number of ways a basketball team of 5 players chosen from 8 players, so that the captain be included in the team $={ }^{8-1} \mathrm{C}_{5-1}={ }^{7} \mathrm{C}_{4}=35$
3. Number of combinations of n dissimilar thing's taken ' r ' at a time in which ' p ' particular things will never occur is ${ }^{n-p} C_{r}$
E.g. The number of ways a basketball team of 5 players chosen out of 10 players, such that the player named Saurav should not be included in the team $={ }^{10-1} \mathrm{C}_{5}={ }^{9} \mathrm{C}_{5}=126$.
4. The number of ways in which $(m+n)$ things can be divided into two groups containing $m \& n$ things respectively ${ }^{(m+n)} C_{n}=\frac{(m+n)!}{m!n!}={ }^{(m+n)} C_{m}$.
5. If $2 m$ things are to be divided into two groups, each containing m things, the number of ways $=$ $\frac{(2 m)!}{\left[2(m!)^{2}\right]}$.
6. The number of ways to divide n things into different groups, one containing p things, another q things \& so on is equal to $\frac{(p+q+r+\ldots .)!}{p!. q!. r!\ldots \ldots}$ Where $\{n=p+q+r+\ldots\}$

Distribution of Identical Objects:

The total number of ways of dividing n identical items among r persons, each of whom can receive $0,1,2$, or more items $(\leq n)$ is ${ }^{n+r-1} C_{r-1}$.

OR

The total number of ways of dividing n identical objects into r groups, if blank groups are allowed, is ${ }^{n+r-1} C_{r-1}$.

Example:

How many non - negative integral solutions are possible for the given equation?

$$
x+y+z=16
$$

Hint: Here, if we look out to the problem we will find 16 objects have to be distributed among 3 different persons (i.e. x, y, z).
Hence $n=16, r=3$ and total number of non' - negative sólutions $={ }^{16+3-1} C_{3-1}={ }^{18} C_{2}=153$.

Some important Results:

i. \quad Number of lines with n points $={ }^{n} \mathbf{C}_{2}$.
\because For making a line exactly two points-are required. So the number of ways in which we can choose two points out of n point is ${ }^{n} C_{2}$.

Combination is used here because a line from A to B is the same as from B to A. So $A B \& B A$ are the same.
(i) n lines can intersect at a maximum of ${ }^{\mathrm{n}} \mathrm{C}_{2}$ points.
(ii) Number of triangles with n points $={ }^{n} C_{3}$.
(iii) Number of diagonals in n sided polygon $={ }^{n} C_{2}-n$
ii. The number of ways in which mn different items can be divided equally into m groups, each containing n objects and the order of the groups is not important, is

$$
\left(\frac{(m n)!}{(n!)^{m}}\right) \frac{1}{m!}
$$

iii. The number of ways in which mn different items can be divided equally into m groups, each containing n objects and the order of the groups is important, is

$$
\left(\frac{(\mathrm{mn})!}{(\mathrm{n}!)^{\mathrm{m}}}\right) \frac{1}{\mathrm{~m}!} \times \mathbf{m}!=\frac{(\mathrm{mn})!}{(\mathrm{n}!)^{m}}
$$

iv. Total number of rectangles formed by \mathbf{n} horizontal and \mathbf{m} vertical lines in a plane $={ }^{m} C_{2} \times{ }^{n} C_{2}$.
v. The total number of ways of dividing n identical items among r persons, each one of whom, can receive $0,1,2$, or more items $(\leq n)$ is ${ }^{n+r-1} C_{r-1}$.

> OR

The total number of ways of dividing n identical objects into r groups, if blank groups are allowed, is ${ }^{n+r}$ ${ }^{-1} C_{r-1}$.

PROBABILITY

If there are n-elementary events associated with a random experiment and m of them are favorable to an event A, the probability of A happening is dénoted by $P(A)$ and is defined as the ratio m / n.
Probability of an event occurring $=\frac{\text { Number of favourable outcomes }}{\text { Number of allpossible outcomes }}$
Thus, $P(A)=\frac{m}{n}$.
Probability always lies between 0 and 1
a. Probability of a sure event is 1.
b. Probability for an impossible event is 0 .

Clearly, $0 \leq m \leq n$, therefore $0 \leq \frac{m}{n} \leq 1$, so that $0 \leq P(A) \leq 1$
Since the number of cases in which the event A will not happen is $n-m$, therefore, if \bar{A} denotes not happening of A, then the probability $P(\bar{A})$ of not happening of A is given by

$$
P(\bar{A})=\frac{n-m}{n}=1-\frac{m}{n}=1-P(A) \quad \text { or } \quad P(A)+P(\bar{A})=1
$$

Odd in favour and odd against:

If \boldsymbol{m} is the favourable chances of an event and \boldsymbol{n} be the total chances of the event, the odds in favour of occurrence of the event \bar{A} are defined by $\mathbf{m}:(\mathbf{n}-\mathbf{m})$ i.e., $P(A): P(\bar{A})$ and the odds against the occurrence of A are defined by $(\mathbf{n}-\mathbf{m}): \mathbf{m}$, i.e., $P(\bar{A}): P(A)$.

Mutually exclusive and inclusive events:

Two or more events are said to be mutually exclusive if these events cannot occur simultaneously. Two or more events are said to be compatible, if they can occur simultaneously.

Two events (A and B) are mutually exclusive, if the intersection of two events is null or they have no common element i.e. $A \cap B=\phi$. And are mutually inclusive, if they have atleast one of the elements in common i.e. A $\cap B \neq \phi$.

E.g.

In drawing a card from a deck of 52 cards:
A: The event that it is a red card.
B : The event that it is a black card.
C : The event that it is a king.
In the above case events A and B are mutually exclusive but the events B and C are not mutually exclusive or disjoint since they may have common outcomes.

More precisely we can use the following formula for these two types of events.

1. If E and F two mutually exclusive events, the probability that either event E or event F will occur in a single trial is given by:

$$
P(E \text { or } F) \text { or } P(E \cup B)=P(E)+P(F)
$$

2. If the events are not mutually exclusive,
$P(E$ or $F)=P(E)+P(F)-P(E$ and F together $)$
or
$P(E \cup F)=P(E)+P(F)-P(E \cap F)$

Note: P (neither E nor $F)=1-P(E$ or $F)$.

Independent Events:

When two events, A and B are independent, the probability of both occurring is:

$$
P(A \text { and } B)=P(A \cap B)=P(A) \times P(B)
$$

Example:

A coin is tossed and a single 6 -sided dice is rolled. Find the probability of getting a head on the coin and a 3 on the dice.

Binomial Distribution:

If n trials are performed under the same condition-and the probability of success in each trial is p, and $q=1-$ p then the probability of exactly r successes in n trials is:

$$
P(r)={ }^{n} C_{r} p^{r} q^{n-r}
$$

Example:

A dice is tossed 5 times. What is the probability that the number 5 shows up exactly thrice, on the dice?

