
 144

COMPUTER SCIENCE (71)

Aims:

1. To enable candidates to comprehend the

concepts and practices of Computer science.

2. To develop an understanding of how
computers store and process data.

3. To enable candidates to describe the major

components of computer hardware, their

functions and interaction.

4. To develop an understanding of the
fundamental concepts of programming and

the ability to apply the same.

5. To develop an appreciation of the
implications of computer use in

contemporary society.

CLASS IX

There will be one paper of two hours duration
carrying 80 Marks and Internal Assessment of

20 marks.

The paper will be divided into two Sections A and B.

Section A (20 marks): This section will consist of

compulsory short answer questions, testing

knowledge, application and skills relating to
elementary/fundamental aspects of the entire syllabus.

Section B (60 marks): This section will consist of

questions based on programming. There will be a
choice of questions and candidates will be required to

answer four questions from this section.

PART I -THEORY

1. Computer hardware: parts of a computer and

their functions

CPU, the clock, cache memory, primary memory,

secondary memory, input and output devices,
communication devices (the aim is not to

describe/discuss an exhaustive list of devices but

to understand what parts are present in a typical
computer and what the function of each part is).

Teachers can open a computer and show the

various parts; explain how the motherboard
becomes a kind of 'central coordinator' where all

the others link up; point out the various chips on

the motherboard that are responsible for the

different functions - CPU, memory, clock, boot
ROM, etc.

Similarly, it is good to show students a floppy disk

and hard disk from the inside (an old non-
functional disk can be used for this purpose).

Peripheral devices should also be shown from the
'inside', if possible.

2. Data representation and internal computer

structure

(i) Number systems, base of a number system -
decimal, binary, octal, hexadecimal

representation, conversion between various

representations, character representations
(ASCII, ISCII, Unicode).

(ii) Representations for integers, real numbers,

limitations of finite representations.

(iii) Internal structure of a computer, a simple

decimal load and store computer and its

machine language, instruction format,

registers, program counter, instruction
register; register addressing modes,

instruction cycle, assembly language for the

same computer, simple algorithms in
assembly language.

The teachers must review the place notation for

decimal numbers, then make students count and

do arithmetic (addition and subtraction) with base
2 and 8. This develops intuition for conversion of

numbers from one base to another. Emphasize the

finiteness of representations when only limited
space is available - a bit, byte and word can be

introduced at this stage to talk about sizes. Give

examples to enable students to understand the
maximum and minimum sized numbers that can be

represented in a given number of bits. Students

can write simple programs to keep increasing the

value of an integer till it overflows and determine
the number of bits to store numbers of that type.

Discuss different ways to represent negative

 145

numbers (signed magnitude, ones complement and

twos complement). Introduce sign, mantissa,
radix, exponent notation and how real

numbers can be represented (sign * mantissa *

radix
exponent

). Discuss normalized and

non-normalized representations, 32-bit and 64-bit
representations. In (i) it is useful to introduce

coding systems for other languages - like ISCII

(for Indian languages) and Unicode as a standard
for all languages of the world. In (iii) a simple

decimal computer simulator can be used which

has load, store, arithmetic, simple conditional
jumps, jump instructions, simple input output. The

idea is to give a clear understanding of how a

typical computer works, without going into too

much detail. The student can write simple
programs using the instruction set of the machine

so that they understand the need for high level

languages. This will also clarify the basic idea of
a stored program where program is treated as

data.

3. Computer software

The boot process, operating system (resource

management and command processor), file

system.

(i) Boot process, operating systems - resource
management, command processing.

(ii) Directories, files and hierarchical file system.

(iii) Programming languages (machine language,
assembly language, high level language).

(iv) Compilers and interpreters.

(v) Application software.

One natural way to visualize an OS is as a
software layer which creates a virtual machine

that is much more useable than the bare machine.

This involves giving the user a high level
command interface and the management of the

raw machine resources (like memory, CPU etc.)

so that they can be used efficiently. The languages
at different levels (machine, assembly, higher) can

be motivated by a discussion based on the

contents of 2 (iii) above and topic 6 below.

Application software is best introduced through
application software that the student will be using

like browsers, spreadsheets, word processing etc.,

this can be integrated with the discussion in
topic 7.

4. Social context of computing and ethical issues

(i) Intellectual property and corresponding laws
and rights, software as intellectual property.

(ii) Software patents, copyrights, and trademarks,

software licensing and piracy.

(iii) Free software foundation and its position on
software, open source software.

(iv) Privacy, email etiquette.

There can be very interesting discussions in the
class regarding the ethical issues. There can be

discussions on copyright, fair use, a program as

free speech and Digital Millennium Copyright
Act. The students can gather more information

from the net. The stress should be on following

good etiquette and ethical practices.

5. Algorithms

(i) Concept of an algorithm.

(ii) Properties of an algorithm (finite, definite,

terminating, precise).

(iii) Basic ideas of the complexity of an algorithm

- space complexity, time complexity.

A number of problems should be introduced to

familiarize the student with the idea of various

ways in which operations on data yield solutions

to problems. (Please refer to topic 6).

The problems should use different forms of data -

numeric, nonnumeric, structured.

Students should be asked to focus upon what are

the outputs required, the inputs needed and work
out the solutions to the problems.

Informal structured English can be used to write
the solutions.

Students should be asked to visualize sample data

for the problem especially for the extreme cases.

They should be asked to trace the algorithms to

see if the expected output is obtained.

This would help stabilize the concept of

algorithms.

Simple algorithms for number problems can be

discussed here. These can be coded in the
programming language that is covered as part of

topic 6. Simple concrete complexity can be

discussed so that students understand that not all

algorithms are the same with respect to time and

 146

space complexity. Also, briefly discuss space-time

tradeoffs.

6. Programming Using a High Level Language

The programming element in the syllabus is

aimed at problem solving and not on merely rote
learning of the commands and syntax of particular

programming languages. Students have the option

to use either BASIC or C++ in order to implement
the high level language concepts and algorithms

and to use them for solving problems. While

choosing BASIC care must be taken to choose a

standard version that has “block if structures”,
“functions through which parameters may be

passed and values returned”. Very old versions

using “goto statements” must not be used. Care
must be taken that „standard and recent‟

versions of the languages are used on the

computer. It is recommended that students
mention the version of the language being used

while writing answers in order to avoid ambiguity.

For example, software such as Microsoft Quick

BASIC, Borland Turbo C++, Visual C++ or GNU
C++ on Linux can be used.

The emphasis here should be on problem solving.

The design approach here may vary. The users of
QBASIC should use the structured programming

approach while C++ users may use the object-

oriented approach.

It must be remembered that the language

(QBASIC/ C++) is just a vehicle for expressing

solutions.

The object-oriented techniques are recommended

as students learn these very naturally and quickly.
Once learnt they are very easy to use.

Simple demonstration programs can be executed
on the computer to illustrate various concepts as

they are introduced.

(i) Primitive data types supported by the
language (integers, floating point numbers,

characters, booleans etc. - will depend on the

language), variables (and their declaration -
based on language), assignment, difference

between the left-hand side and right-hand side

of an assignment.

(ii) Expressions - arithmetic and logical,

evaluation of expressions, type of an

expression (depends on language). Operators,
associativity and precedence of operators.

(iii) Statements, blocks (where relevant), scope

and visibility of variables.

(iv) Conditional statements (if and if-then-else),

switch, break, default.

(v) Loops (for, while-do, do-while).

(vi) Simple input/output using standard
input/output.

The teachers should introduce problem solving

through numerous examples and informally
familiarize the students with the idea of various

ways in which operations on data yield solutions

to problems. The examples should use different
forms of data (numeric, non-numeric, structured).

In the beginning the solutions should be written in

a freely invented structured form of English. The

informal structured English constructs should not
be too high level – they should be at a level where

they can be unambiguously carried out – which

means they are at par with programming
language constructs. For example, primitive

constructs like minimum or maximum of a set of

numbers, sort etc. should not be allowed (see
examples below). Such compound constructs

should be introduced as abstractions, that is as

functions or procedures. In the process of writing

the solutions, motivate and informally introduce:

- How the real world presents us with different

types of data (numeric, non-numeric, boolean,
structured).

- The notion of using a variable to hold data.

- How the assignment operation is used to
change the data a variable denotes.

- How operations on the variable actually
operate on the data.

- How input and output are needed.

- How the sequence of operations on data can
be abstracted out (as an algorithm) and be

repeated on different data sets.

- The concept of a processor (the teacher) and

a store (the blackboard) by mechanically

tracing/executing the solutions.

- How the same kind of repetitive operation

sequences seem to appear again and again in
the solutions (conditionals, loops).

- How some solutions can be reused in solving

other problems.

 147

Throughout this topic the informal structured

English constructs of algorithms should be shown
to correspond to similar constructs in the

language. Programs should be written for all the

examples. Students should run all the programs

discussed in class in the lab. Some of these
programs will be done only after the necessary

concepts have been introduced.

Sample examples:

a) Multiplication as repeated addition.

b) Finding if a number is a prime number.

c) Find the maximum or minimum of 3 numbers,

10 numbers, a given set of n numbers

(requires input/output).

d) Ordering (ascending or descending) a set of 3

numbers; a set of 10 numbers; a given set of n
numbers. Try to reuse what is done in c).

e) Finding the number of vowels in a given

sentence (composite data, non-numeric data).

f) Finding the number of words in a given
sentence.

g) Finding out who has got the maximum
aggregate marks in the class after an exam in

all the subjects (structured data, accessing

elements within structured data).

7. Computers in everyday life

(i) Familiarity with software for word

processing, databases, spreadsheets, making
presentations.

(ii) Basic introduction to the Internet, browsing,

email.

Students should be encouraged to use computers

to write the assignments, project reports, create
banners and placards for school events. They will

automatically learn to use the word processors

and spreadsheets, etc.

Students should be encouraged to log on to the

Internet to gather material for their projects.

A number of interesting assignments can also be
given in this section.

PART II - INTERNAL ASSESSMENT

(PRACTICAL WORK)

Part II (Practical work) will carry 20 marks and shall

be assessed on a continuous basis throughout the year.

The assessment of practical work should include small

projects using software in item 7 and solutions to

programming problems in item 6, which have been

coded and run in the higher level language being used

in the course.

Teachers should maintain a record of work done

through the year and give it due credit at the time of

cumulative evaluation at the end of the year.

 148

CLASS X

There will be one paper of two hours duration

carrying 80 Marks and Internal Assessment of

20 marks.

The paper will be divided into two Sections A and B.

Section A (20 marks): This section will consist of

compulsory short answer questions, testing

knowledge, application and skills relating to
elementary/fundamental aspects of the entire syllabus.

Section B (60 marks): This section will consist of

questions based on programming. There will be a

choice of questions and candidates will be required to
answer four questions from this section.

PART I -THEORY

1. Computer Structure

(i) Logic gates (NOT, AND, OR, XOR) and their

use in computers.

(ii) Review of number systems (binary, decimal,

octal, hexadecimal), representation for

different types - integers, float, characters.

(iii) Simple binary arithmetic, including addition,
subtraction, multiplication and division.

(iv) Computer logic, Boolean operations, logical

operators (NOT, AND, OR, XOR) and their
truth tables.

The following points should be discussed:

a. Some interesting real life examples can be

taken to introduce propositional logic and

fundamental Boolean operations.

b. These can be connected to problem solving

and programming.

c. Verification of fundamental laws of Boolean

algebra using truth tables.

d. Writing inputs and outputs for a circuit like

half adder and writing the SOP expression.

e. Using Boolean algebra to reduce expressions.

f. Drawing logic gate diagrams for the given

expression.

g. The finiteness of representations should be
emphasized to show that real numbers and

fractions (that is rational numbers) are only

approximated and cannot be represented

exactly in some cases. For example, consider

not terminating decimal representations of

fractions and representations of irrational
numbers like π.

2. Review of Programming

Review of programming in BASIC or in C++
from Class IX.

(i) Primitive data types supported by the

language (integers, floating point numbers,

characters, booleans etc. - will depend on the
language), variables (and their declaration -

based on language), assignment, difference

between the left-hand side and right-hand side
of an assignment.

(ii) Expressions - arithmetic and logical,

evaluation of expressions, type of an
expression (depends on language). Operators,

associativity and precedence of operators.

(iii) Statements, blocks (where relevant), scope

and visibility of variables.

(iv) Conditional statements (if and if-then-else),

switch, break, default.

(v) Loops (for, while-do, do-while).

(vi) Simple input/output using standard

input/output.

Topics 5 and 6 of Class IX syllabus should be

revised briefly. By now, students should be

reasonably adept at problem solving using

QBASIC/C++.

3. Advanced Programming

The programming element in the syllabus is

aimed at problem solving and not on merely rote

learning of the commands and syntax of particular
programming languages. Students have the option

to use either BASIC or C++ in order to implement

algorithms and to use them for solving problems.

While choosing BASIC, care must be taken to
choose a standard version that has “block if

structures”, “functions through which parameters

may be passed and values returned”. Very old

versions using “goto statements” must not be

 149

used. Care must be taken that „standard and

recent‟ versions of the languages are used on the
computer - it is recommended that students

mention the version of the language being used

while writing answers in order to avoid ambiguity.

For example, software such as Microsoft Quick
BASIC, Borland Turbo C++, Visual C++ or GNU

C++ on Linux can be used.

(i) Functions / subroutines as procedural
abstractions. Using functions/subroutines in

programs.

(ii) Arguments and argument passing in
functions/subroutines.

(iii) Scope of variables.

The concepts to be emphasized are:

 How functions/subroutines help in solving

larger and complex problems.

 How the same code can be reused from

various points in a program.

 Parameter passing (pass by value/pass by

reference).

 Return values.

 Scope and visibility of variables.

 The examples done in Class IX can be used to

motivate the need for abstracting out and
capturing functionality used repeatedly in

multiple places. In each example, the

complexity of actually executing the function
should be analyzed - what happens in the

worst case and what happens on average.

Students should run the algorithms on

multiple instances of random data to convince
themselves that the analytical approach

matches what they observe.

Examples:

a) Use minimum and maximum functions of n

numbers to arrange n numbers in

ascending/descending order.

b) Use a search function for a given search

element from a given point to solve problems

like finding number of vowels in a sentence,

number of words in a sentence etc.

Those using object oriented program can

introduce classes and member functions at this

point.

(iv) Structured types, arrays as an example of a

structured type. Use of arrays in sorting and
searching. Two-dimensional arrays. Use of

two-dimensional arrays to represent matrices.

Matrix arithmetic using arrays. Use of arrays

to solve linear equations (Gauss elimination
method).

The concepts involved are:

 How a large amount of data of the same

type can be stored and accessed by using

one variable name and a subscript.

 How complex problems can be solved easily

with the help of arrays. e.g.

 Frequency counts

 Selection sort

 Linear search

 Binary search

 School timetable and matrices can be used

to introduce two-dimensional arrays.

To begin with, some simple examples can be

used:

 Finding sum/difference of two matrices.

 Finding the sum of the elements of rows and

columns of a matrix.

(v) Review of input/output using standard input

and standard output from Class IX.

Input/output using sequential files. Opening,
closing files. Creating and deleting files.

Formatting output. Concept of a token and

separator. Extracting tokens from the input.

Only sequential file programs need to be done
in QBASIC. In C++ formatted data may be

written on to the streams. Programs for

creating files, reading them, updating them
and manipulating them should be done.

(vi) Characters, ASCII representation, strings as a

composite data type; functions on strings

(ex. length, substring, concatenate, equality,

accessing individual characters in a string,

inserting a string in another string at a given

location).

(vii)Simple type casting for primitive types;

inter-conversion between character/string

types and numeric types.

 150

The students should understand why the

ASCII code is needed.

In QBASIC there are library functions for

inter conversion but in C++ simple

assignment from char to int and vice-versa

will do the job. Simple string and text

processing problems like: substring problems,

search problems in a text, frequency problems

in text can be used for motivation.

(viii)Distinction between compile time and run

time errors. Run time errors due to finite

representations - overflow, underflow. Other

run time errors.

Self-explanatory.

(ix) Basic ideas about linking, loading, execution.

 Self-explanatory.

4. Documentation of programs

Need for good documentation; good

documentation practices; standards and naming

conventions.

The teachers can show an undocumented program
and then the same program properly documented,

with good naming conventions. Experiments can

be done on how much time it takes for making
changes to the program (so that it does something

extra) and trying to understand the program.

5. Practical Work

Regular programming in labs. should supplement

every topic that is taught in the classroom. The

students will be expected to invent algorithmic

solutions expressed in C++ or Basic to solve
problems and then actually implement and run the

program to get answers.

The student will also be required to do a project
that involves significant programming effort.

Self-explanatory.

PART II - INTERNAL ASSESSMENT

(PRACTICAL WORK)

Internal Assessment will comprise of assignments and

Project work.

Minimum number of Assignments

Assignments as prescribed by the teacher to cover all

the concepts in the programming syllabus.

Project Work - One project in BASIC or C++.

Suggested Assignments

 The generation of all three-digit prime numbers,

mensuration, calculating income tax,

commissions, etc.

 Various number problems, twin primes, perfect

numbers, Syracuse numbers, etc.

 A programming assignment on a problem

resulting in formatted screen or printer output,

Example: forming a diamond shape with the*

character in the middle of the screen, calculating

and outputting electricity bills, printing tabular

data.

 A small menu driven program, marks processing

and ranking algorithms.

 Sorting and searching algorithms.

 Permutation generation algorithms.

 Finding mode, mean, median of a set of numbers.

 File handling assignment. A sequential file may

be prepared by the teacher to be manipulated by

the students in one or more of the following ways:

Reading and filtering data according to given

criteria, adding/deleting/ modifying records.

Programming Project

Proposed Guidelines for Marking

The teacher should use the criteria below to judge the

internal work done. Basically, four criteria are being

suggested: Analysis, Algorithm Design, Coding and

Documentation and Execution. The important

questions to be asked when evaluating each criterion

are shown. 25% of the total credit is assigned to each

criterion - so each is equally important. The actual

grading will be done by the teacher based on his/her

judgment. However, one recommended criteria is:

divide the outcome for each criterion into one

of 4 groups: excellent, good, fair/acceptable, poor/

 151

unacceptable, then use numeric values for each grade

and add to get the total which can be multiplied by a

suitable factor to get the final marks.

Analysis:

Has the problem been analyzed carefully?

Are all attributes with the right kinds of types present?

Has the problem been broken up into proper

segments?

Algorithm design:

Is the choice of data structures proper?

Is the algorithm suitable for the problem?

How efficient is it?

Coding and Documentation:

Is the coding done properly? (Choice of names, no

unconditional jumps, proper organization of

conditions, proper choice of loops, error handling,

code layout)

Is the documentation complete and readable?

(Documentation, variable documentation, function

documentation, constraints, known bugs - if any)

Execution:

Does the program run correctly on all sample input?

Criteria

(total

marks -

20)

Analysis

(mm-5)

Algorithm

Design

(mm-5)

Coding and

Documentation

(mm-5)

Execution

(mm-5)

Excellent 5 5 5 5

Good 4 4 4 4

Fair 3 3 3 3

Poor 2 2 2 2

EVALUATION

Teachers should maintain a record of work done

through the year and give it due credit at the time of

cumulative evaluation at the end of the year.

An External Examiner shall evaluate the one project

built by the candidates. The examiner shall view the

project and conduct a viva to judge the depth of

knowledge and understanding of the candidate.

An External Examiner shall be nominated by the

Principal and may be a teacher from the faculty, but

not teaching the subject in the relevant section/class.

For example, a teacher of Computer Science of

Class VIII may be deputed to be the External

Examiner for Class X, Computer Science Projects.

Evaluation of practical work will be done as follows:

Award of Marks (20 Marks)

Subject Teacher (Internal Examiner) 10 Marks

External Examiner 10 Marks

The total marks obtained out of 20 are to be sent to the

Council by the Head of the school.

The Head of the school will be responsible for the

entry of marks on the mark sheets provided by the

Council.

EQUIPMENT

There should be enough computer systems to provide

for a teaching schedule where at least three-fourths of

the time available is used for programming and

project work.

The hardware and software platforms should be such

that the students can comfortably develop and run

programs on those machines.

Since hardware and software evolve and change very

rapidly the schools shall need to upgrade them as

required.

Following are the recommended specifications as of

now:

THE FACILITIES:

 A lecture cum demonstration room with a

MULTIMEDIA PROJECTOR/ an LCD and

O.H.P. attached to the computer.

 A white board with white board markers should

be available.

 152

 A fully equipped Computer Laboratory that

allows one computer per student.

 Internet connection for accessing the World Wide

Web and email facility.

 The computers should have a Minimum of

128 MB RAM and a PIII or Equivalent Processor.

 Good quality printers.

 A scanner, a web cam/a digital camera - should be

provided if possible.

SOFTWARE:

There is a wide variety of software packages and

operating systems and compiler available but software

has to be chosen very carefully. Any suitable

Operating System or Software Package, which is

being used currently and is likely to be used in future,

can be chosen.

The criteria used in the selection of software should

be:

 It should have a good user interface so that the

beginners may learn to use it easily.

 It should be used widely and be easily available.

 The material related to the software should be

abundantly available.

In this respect the latest versions of the chosen

software should be made available.

Great emphasis should be placed on ethics. Some

people do not object to using pirated software. They

do not realize that it has something to do with ethics.
It is important to introduce these concepts to the

students in the very beginning.

The Council does not recommend any Operating

systems or Software Packages by any particular

Vendor.

The schools are free to use Software Packages

available in the Public Domain Software.

