AMIETE - ET/CS/IT (OLD SCHEME)

Code: AE01/AC01/AT01
Time: 3 Hours
JUNE 2010

Subject: MATHEMATICS-I
Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
(2×10)
a. The value of limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x+\sqrt{y}}{\sqrt{\left(x^{2}+y\right)}}$ is
(A) limit does not exist
(B) 0
(C) 1
(D) -1
b. If $\mathrm{u}=\sin ^{-1}\left(\frac{\mathrm{x}}{\mathrm{y}}\right)+\tan ^{-1}\left(\frac{\mathrm{y}}{\mathrm{x}}\right)$, then the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$ is
(A) u
(B) 2 u
(C) 3 u
(D) 0
c. The solution of the differential equation $(y+x)^{2} \frac{d y}{d x}=a^{2}$ is given by
(A) $y+x=a \tan \left(\frac{y-c}{a}\right)$
(B) $y-x=\tan \left(\frac{y-c}{a}\right)$
(C) $y-x=a \tan (y-c)$
(D) $a(y-x)=\tan \left(y-\frac{c}{a}\right)$
d. The solution of the differential equation $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=e^{3 x}$ is
(A) $y=a e^{x}+b e^{2 x}+\frac{1}{2} e^{3 x}$
(B)
$y=a e^{-x}+b e^{-2 x}+\frac{1}{2} e^{3 x}$
(C) $y=a e^{x}+b e^{-2 x}+\frac{1}{2} e^{3 x}$
(D) $y=a e^{-x}+b e^{2 x}+\frac{1}{2} e^{3 x}$
e. If $3 x+2 y+z=0, x+4 y+z=0,2 x+y+4 z=0$, be a system of equations then
(A) System is inconsistent.
(B) It has only trivial solution.
(C) It can be reduced to a single equation thus solution does not exist.
(D) Determinant of the coefficient matrix is zero.
f. If λ is an eigenvalue of a non-singular matrix A then the eigenvalue of A^{-1} is
(A) $1 / \lambda$
(B) λ
(C) $-\lambda$
(D) $-1 / \lambda$
g. The value of $P_{n}(-1)$ is
(A) -1
(B) 1
(C) $(-1)^{n}$
(D) 0
$\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$
h. The value of integral ${ }^{0} \mathrm{x}^{2}$ is equal to
(A) $\frac{3}{4}$
(B) $\frac{3}{8}$
(C) $\frac{3}{5}$
(D) $\frac{3}{7}$
i. If $u=f\left(\frac{y}{x}\right)$ then
(A) $x \frac{\partial u}{\partial x}-y \frac{\partial u}{\partial y}=0$
(B) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=0$
(C) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=2 u$
(D) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=1$
j. The value of the integral $\int x^{2} J_{1}(x) d x$ is
(A) $x^{2} J_{1}(x)+c$
(B) $x^{2} J_{-1}(x)+c$
(C) $x^{2} J_{2}(x)+c$
(D) $x^{2} J_{-2}(x)+c$

Answer any FIVE Questions out of EIGHT Questions.
Q. 2 a. Find the extreme value of the function $f(x, y, z)=2 x+3 y+z \quad$ such that $x^{2}+y^{2}=$ 5 and $\mathrm{x}+\mathrm{z}=1$.
$f(x, y)=\left\{\begin{array}{cl}(x+y) \sin \left(\frac{1}{x+y}\right), & x+y \neq 0 \\ 0, & x+y=0 \text { is continuous at }\end{array}\right.$
b. Show that the function

$$
f(x, y)=\left\{\begin{array}{cc}
(x+y) \sin \left(\frac{1}{x+y}\right), & x+y \neq 0 \tag{8}\\
0, & x+y=0
\end{array}\right.
$$

$(0,0)$ but its partial derivatives of first order does not exist at $(0,0)$.
Q. 3 a. Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-\left(x^{2}+y^{2}\right)} \mathrm{dxdy}$ by changing to polar coordinates. Hence show that $\int_{0}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}=\sqrt{\pi} / 2$
b. Show that the approximate change in the angle A of a triangle $A B C$ due to small changes $\delta a, \delta b, \delta c$ in the sides a, b, c respectively, is given by

$$
\begin{align*}
& \delta A=\frac{a}{2 \Delta}(\delta a-\delta b \cos C-\delta c \cos B) \\
& \delta A+\delta B+\delta C=0
\end{align*}
$$

where Δ is the area of the triangle. Verify that
Q. 4 a. If $\mathrm{x}+\mathrm{y}=2 \mathrm{e}^{\theta} \cos \phi$ and $\mathrm{x}-\mathrm{y}=2 \mathrm{ie}^{\theta} \sin \phi$. Show that

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial \phi^{2}}=4 x y \frac{\partial^{2} u}{\partial x \partial y} \tag{8}
\end{equation*}
$$

b. Using the method of variation of parameter method, find the general solution of the differential equation $y^{\prime \prime}+16 y=32 \sec 2 x$.
Q. 5 a. Find the general solution of the equation $y^{\prime \prime}-4 y^{\prime}+13 y=18 e^{2 x} \sin 3 x$.
b. Find the general solution of the equation $x^{3} \frac{d^{3} y}{d x^{3}}+5 x^{2} \frac{d^{2} y}{d x^{2}}+5 x \frac{d y}{d x}+y=x^{2}+\ln x$.
Q. 6 a. Solve $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$
b. If $A=\left[\begin{array}{ccc}2+i & 3 & -1+3 i \\ -5 & i & 4-2 i\end{array}\right]$, show that $A A^{*}$ is a Hermitian matrix, where A* is the conjugate transpose of A.
Q. 7 a. Show that the matrix A is diagonalizable. $\quad\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)$. If so, obtain the matrix P such that $P^{-1} A P$ is a diagonal matrix.
b. Investigate the values of λ for which the equations
$(\lambda-1) x+(3 \lambda+1) y+2 \lambda z=0$,
$(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z=0$,
$2 x+(3 \lambda+1) y+3(\lambda-1) z=0$
are consistent, and hence find the ratios of $x: y: z$ when λ has the smallest of these values.
(8)
Q. 8 a. Use elementary row operations to find inverse of $\quad\left[\begin{array}{ccc}-2 & -4 & -4\end{array}\right]$
b. Find the first five non-vanishing terms in the power series solution of the initial

Q. 9 a. Show that $J_{5 / 2}(x)=\sqrt{\frac{2}{n \pi}}\left[\frac{1}{x^{2}}\left(3-x^{2}\right) \sin x-\frac{3}{x} \cos x\right]$
b. Show that $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\left\{\begin{array}{cc}0, & m \neq n \\ \frac{2}{2 n+1}, & m=n\end{array}\right.$

