AMIETE - ET/CS/IT (OLD SCHEME)

Code: AE01/AC01/AT01 Time: 3 Hours

JUNE 2010

Subject: MATHEMATICS-I Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The value of limit

$$\lim_{(x,y)\to(0,0)} \frac{x+\sqrt{y}}{\sqrt{x^2+y}}$$
is
(A) limit does not exist
(B) 0
(C) 1
(D) -1

$$u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right), \text{ then the value of } x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} \text{ is}$$
(A) u
(C) 3u
(B) 2u
(C) 3u
(D) 0
(C) $y-x = a \tan\left(\frac{y-c}{a}\right)$
(C) $y-x = a \tan\left(y-c\right)$
(D) $a(y-x) = \tan\left(\frac{y-c}{a}\right)$
(C) $y-x = a \tan\left(y-c\right)$
(D) $a(y-x) = \tan\left(y-\frac{c}{a}\right)$
(C) $y = ae^x + be^{2x} + \frac{1}{2}e^{3x}$
(C) $y = ae^x + be^{-2x} + \frac{1}{2}e^{3x}$
(D) $y = ae^{-x} + be^{2x} + \frac{1}{2}e^{3x}$

(2 × 10)

- e. If 3x+2y+z=0, x+4y+z=0, 2x+y+4z=0, be a system of equations then
 - (A) System is inconsistent.
 - **(B)** It has only trivial solution.
 - (C) It can be reduced to a single equation thus solution does not exist.
 - (D) Determinant of the coefficient matrix is zero.
- f. If λ is an eigenvalue of a non-singular matrix A then the eigenvalue of A^{-1} is

(A)	$1/\lambda$	(B)	λ
(C)	$-\lambda$	(D)	$-1/\lambda$

g. The value of $P_n(-1)$ is **(A)** −1 **(B)** 1 (C) $(-1)^n$ h. The value of integral $\int_{0}^{1} \int_{x^{2}}^{2-x} xy \, dx \, dy$ $\int_{0}^{1} \int_{x^{2}}^{2-x} xy \, dx \, dy$ **(D)** 0 is equal to (A) $\frac{3}{4}$ (C) $\frac{3}{5}$ 3 $(\mathbf{B}) \ \overline{8}$ **(D)** $\frac{3}{7}$ i. If $u = f\left(\frac{y}{x}\right)$ then (A) $x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = 0$ **(B)** $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$ (C) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u$ **(D)** $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$ j. The value of the integral $\int x^2 J_1(x) dx$ is

(A) $x^2 J_1(x) + c$	(B) $x^2 J_{-1}(x) + c$
(C) $x^2 J_2(x) + c$	(D) $x^2 J_{-2}(x) + c$

Answer any FIVE Questions out of EIGHT Questions. Each Question carries 16 marks.

Q.2 a. Find the extreme value of the function f(x,y,z) = 2x + 3y + z such that $x^2+y^2 = 5$ and x + z = 1. (8)

$$f(x, y) = \begin{cases} (x+y)\sin\left(\frac{1}{x+y}\right), & x+y \neq 0\\ 0, & x+y=0 \end{cases}$$

b. Show that the function $\begin{bmatrix} 0, & x+y=0 \\ (0,0) \text{ but its partial derivatives of first order does not exist at (0,0).} \end{bmatrix}$ is continuous at (0,0) but its partial derivatives of first order does not exist at (0,0).

Q.3 a. Evaluate
$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$$
 by changing to polar coordinates. Hence show that $\int_{0}^{\infty} e^{-x^2} dx = \sqrt{\pi}/2$ (8)

b. Show that the approximate change in the angle A of a triangle ABC due to small changes δa , δb , δc in the sides a, b, c respectively, is given by

$$\delta A = \frac{a}{2\Delta} (\delta a - \delta b \cos C - \delta c \cos B)$$

where Δ is the area of the triangle. Verify that
 $\delta A + \delta B + \delta C = 0$ (8)

Q.4 a. If
$$x + y = 2e^{\theta} \cos \phi$$
 and $x - y = 2ie^{\theta} \sin \phi$. Show that

$$\frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial \phi^2} = 4xy \frac{\partial^2 u}{\partial x \partial y}$$
(8)

b. Using the method of variation of parameter method, find the general solution of the differential equation $y'' + 16y = 32 \sec 2x$. (8)

Q.5 a. Find the general solution of the equation
$$y'' - 4y' + 13y = 18e^{2x} \sin 3x$$
. (8)

b. Find the general solution of the equation $x^3 \frac{d^3 y}{dx^3} + 5x^2 \frac{d^2 y}{dx^2} + 5x \frac{dy}{dx} + y = x^2 + \ln x$ (8)

Q.6 a. Solve
$$(1+y^2)dx = (\tan^{-1}y - x)dy$$
 (8)

 $A = \begin{bmatrix} 2+i & 3 & -1+3i \\ -5 & i & 4-2i \end{bmatrix}, \text{ show that } AA^* \text{ is a Hermitian matrix, where}$ A* is the conjugate transpose of A. (8)

Q.7 a. Show that the matrix A is diagonalizable.
$$\begin{pmatrix} 0 & 1 & 2 \end{pmatrix}$$
. If so, obtain the matrix P such that $P^{-1}AP$ is a diagonal matrix. (8)

b. Investigate the values of λ for which the equations $(\lambda - 1)\mathbf{x} + (3\lambda + 1)\mathbf{y} + 2\lambda \mathbf{z} = 0,$ $(\lambda-1)x+\big(4\lambda-2\big)y+\big(\lambda+3\big)z=0,$ $2x + (3\lambda + 1)y + 3(\lambda - 1)z = 0$ are consistent, and hence find the ratios of x:y:z when λ has the smallest of these

values. (8) $\begin{bmatrix} 1 & 1 & 3 \end{bmatrix}$

 $A = \begin{pmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \end{pmatrix}$

a. Use elementary row operations to find inverse of
$$A = \begin{bmatrix} 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$$

b. Find the first five non-vanishing terms in the power series solution of the initial value problem $(1-x^2)y'' + 2xy' + y = 0$, y(0) = 1, y'(0) = 1. (11)

hat
$$J_{5/2}(x) = \sqrt{\frac{2}{n\pi}} \left[\frac{1}{x^2} (3 - x^2) \sin x - \frac{3}{x} \cos x \right]$$
 (8)

b. Show that
$$\int_{-1}^{1} P_m(x)P_n(x)dx = \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, & m = n \end{cases}$$
 (8)

Q.8

(5)