Department of Mathematics and Statistics University of Hyderabad

Note: Throughout this question paper, $\mathbb N$ stands for the set of all natural numbers, $\mathbb Z$ stands for the set of all integers, $\mathbb Q$ stands for the set of all rational numbers , $\mathbb R$ stands for the set of all real numbers and $\mathbb C$ stands for the set of all complex numbers.

Part A - 1 mark for each question

1.	Let $\lambda = e^{\frac{30\pi i}{36}}$.	Then the	${\rm smallest}$	positive	integer l	such tha	$\lambda^l =$	1 is
	(a) 6							
	(1) 0							

- (b) 9 (c) 12
- (c) 12 (d) 5
- 2. Consider the vector (1,1,1) in \mathbb{R}^3 . Two linearly independent vectors orthogonal to it are
 - (a) (1,-1,1) and (1,1,-2)
 - (b) (-2,1,1) and (1,1-2)
 - (c) (1,-1,0) and (2,-2,0)
 - (d) (0,1,-1) and (0,-2,2)
- 3. The graph of the polynomial $(X^2-2)(X^2+X+1)$ will cross the X-axis
 - (a) 0 times
 - (b) once
 - (c) twice
 - (d) 3 times
- 4. "There exists an integer which is not divisible by the square of a prime number". The negation of this statement is
 - (a) There exists an integer which is divisible by the square of a prime
 - (b) Every integer is not divisible by the square of a prime number
 - (c) Every integer is divisible by the square of a prime number
 - (d) There exists many integers divisible by the square of a prime number
- 5. Let $f,g:\mathbb{R}\to\mathbb{R}$ be continuous functions whose graphs do not intersect. Then for which function below the graph lies entirely on one side of the X-axis
 - (a) f
 - (b) g+f

- (c) g-f
- (d) gf
- 6. An example of a function from $\mathbb{R} \to \mathbb{R}^2$ with bounded range is
 - (a) $f(t) = (t, t^2)$
 - (b) $f(t) = (t, \sin t)$
 - (c) $f(t) = (t, \sinh t)$
 - (d) $f(t) = (\sin t, \cos t)$
- 7. The real root of $X^3 + X + 1 = 0$ lies between
 - (a) -2 and -1
 - (b) -1 and 0
 - (c) 1 and 2
 - (d) 2 and 3
- 8. Which of the following maps is a linear transformation from \mathbb{R}^3 to \mathbb{R} ?
 - (a) T(a, b, c) = a(b + c)
 - (b) T(a, b, c) = 2(a + b + c)
 - (c) T(a, b, c) = ab + c
 - (d) T(a, b, c) = abc
- 9. The events A_1 and A_2 occur with probabilities 0.6 and 0.8 respectively. At least one of them occurs with a probability of 0.9. The probability that both A_1 and A_2 will occur is
 - (a) 0
 - (b) 0.5
 - (c) 1
 - (d) cannot be determined from the data given
- 10. Two students each are randomly placed in n rooms in a hostel. If n of the 2n students are Mathematics students and n are in Statistics, the probability that each room has Mathematics student and a statistics student is
 - (a) $\frac{1}{2n!}$
 - (b) $\frac{1}{2n!}$
 - (c) $\frac{2^n}{2^n C_n}$
 - $(d) \ \frac{2^n}{(n!)^2}$
- 11. How many positive integers a less than 24 satisfy $a^8 \equiv 1 \pmod{24}$?

- (a) 2
- (b) 4
- (c) 6
- (d) 8
- 12. Suppose $f:[0,\infty)\longrightarrow \mathbb{R}$ is continuous
 - (a) Then f is uniformly continuous on $[k, \infty)$ for some k > 0
 - (b) Then |f| is uniformly continuous on $[0, \infty)$
 - (c) If f is uniformly continuous on $[k, \infty)$, for some k > 0, then f is uniformly continuous on $[0, \infty)$
 - (d) If f is decreasing then f is uniform continuous
- 13. Let V be a vector space of all polynomials of degree less than or equal 4 over \mathbb{Q} and $W = \{\sum_{i=0}^4 a_i X^i \in \mathbb{Q}[X] \mid a_0 \text{ is an even integer}\}$. Then
 - (a) W is not a subspace of V
 - (b) W is a subspace and $\dim W < \dim V$
 - (c) W is a subspace and $\dim W = 4$
 - (d) W is a subspace and $\dim W = 5$
- 14. $x^2 = 2y^2 \log y$ is a solution of
 - (a) $\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$
 - (b) $\frac{dy}{dx} = \frac{2xy}{x^2 + y^2}$
 - (c) $\frac{dy}{dx} = \frac{2xy}{2x^2 + y^2}$
 - $(d) \frac{dy}{dx} = \frac{2xy}{x^2 + 2y^2}$
- 15. Let C_1 , C_2 be two circles in \mathbb{R}^2 with centres at points a, b respectively and suppose that $C_1 \cap C_2$ is a singleton set $\{c\}$. Let |a-b| denote the distance between a and b. Then
 - (a) $|a b| \ge |a c|$
 - (b) |a-b| = |a-c| + |c-b|
 - (c) $|a-b|^2 = |a-c|^2 + |c-b|^2$
 - (d) None of these
- 16. The distance between the straight lines 3x-4y+10=0 and 3x-4y-5=0 is
 - (a) 0
 - (b) 3
 - (c) 5

- (d) 15
- 17. $f(x) = e^x e^{-x}$, $g(x) = e^x + e^{-x}$ Then
 - (a) Both f and g are even functions
 - (b) Both f and g are odd functions
 - (c) f is odd, g is even
 - (d) f is even, g is odd
- 18. $x_{n+1} = \frac{-3}{4}x_n$, $x_0 = 1$. The sequence $\{x_n\}$
 - (a) diverges
 - (b) x_n is monotonically increasing and converges to 0
 - (c) x_n is monotonically decreasing and converges to 0
 - (d) None of the above
- 19. f(x) is an odd function, g(x) an even function then
 - (a) $f \circ g$ is odd
 - (b) $f \circ g$ is even
 - (c) $f \circ f$ is odd
 - (d) $g \circ g$ is odd
- 20. Let X be a set and $f,g:X\to X$ be functions. We can say that $f\circ g$ is bijective if
 - (a) at least one of f, g is bijective
 - (b) both f and g are bijective
 - (c) f is 1-1 and g is onto
 - (d) f is onto and g is 1-1
- 21. Let $f:[-1,1]\to\mathbb{R}$ be a continuous function such that $\int_{-1}^1 f(x)dx=0$. Then
 - (a) $f \equiv 0$
 - (b) f is an odd function
 - (c) $\int_{-1/2}^{1/2} f(x)dx = 0$
 - (d) None of these
- 22. Let $f,g:\mathbb{R}\to\mathbb{R}$ be functions. We can conclude that $h(x)\leq f(x)\,\forall x\in\mathbb{R}$ if we define $h:\mathbb{R}\to\mathbb{R}$ as
 - (a) $\min\{g(x), f(x) + g(x)\}\$
 - (b) $\min\{f(x), f(x) + g(x)\}\$

- (c) $\max\{g(x), f(x) + g(x)\}$
- (d) $\max\{f(x), f(x) + g(x)\}\$
- 23. Let X be a non-empty set, $f: X \to X$ be a function and let $A, B \subset X$. Then the identity $f(A \cap B) = f(A) \cap f(B)$ is true
 - (a) always
 - (b) if f is 1-1
 - (c) if f is onto
 - (d) if $A \cup B = X$
- 24. If $n \ge 1000$ is a natural number, the remainder when $n^2 + n + 1$ is divided by 4 is
 - (a) always 1
 - (b) always 3
 - (c) 1 or 3
 - (d) 0 or 2
- 25. Let X be a finite set with 5 elements. Then the number of 1-1 functions from $X \times X$ to $X \times X$ is
 - (a) 5!
 - (b) $(5!)^2$
 - (c) 25!
 - (d) $\frac{25!}{5!}$

Part B - 2 marks for each question

- 1. The number of 2×2 matrices with integer entries that satisfy the polynomial X^2+X+1 is
 - (a) atmost 2
 - (b) exactly 2
 - (c) infinite
 - (d) none
- 2. Let $(\mathbb{Q},+)$ be the group of all rationals under addition and $(\mathbb{Q}_+^*,.)$ be the group of positive nonzero rationals under multiplication. Suppose $f:\mathbb{Q}\to\mathbb{Q}_+^*$ is a homomorphism. Then f(17)=
 - (a) 17^2
 - (b) 17
 - (c) $\frac{1}{17}$

- (d) 1
- 3. Let f be a function from [-1,1] to \mathbb{R}
 - (a) If f is differentiable at 0 with f'(0) = 0 then f(0) = 0
 - (b) If f(0) = 0 then f is differentiable at 0
 - (c) If f(0) = 0 then the X-axis is tangent to the graph of f at 0
 - i. All three statements are false
 - ii. (a) and (c) are false but (b) is true
 - iii. (a) and (b) are false but (c) is true
 - iv. (b) and (c) are false but (a) is true
- 4. Let $f_n(x) = (x + \frac{1}{n})^2$ and $f(x) = \lim_{n \to \infty} f_n(x)$. Then
 - (a) $\lim_{n\to\infty} \int_0^1 f_n(x) dx$ does not exist
 - (b) $\lim_{n\to\infty} \int_0^1 f_n(x) dx$ exists but $\int_0^1 f(x) dx$ does not exist
 - (c) $\lim_{n\to\infty} \int_0^1 f_n(x) \, dx = \int_0^1 f(x) \, dx$
 - (d) $\lim_{n\to\infty} \int_0^1 f_n(x) \, dx \neq \int_0^1 f(x) \, dx$
- 5. Let $f(x) = |\cos x|$ and $g(x) = \cos |x|$. then
 - (a) both f and g are differentiable at 0
 - (b) f is differentiable at 0 but g is not
 - (c) q is differentiable at 0 but f is not
 - (d) neither f nor g are differentiable at 0
- 6. Let V_1 and V_2 be subspaces of \mathbb{R}^3 given by $V_1 = \{(a, b, c) \in \mathbb{R}^3 | a + b = 2c\}$ and $V_2 = \{(a, b, c) \in \mathbb{R}^3 | a + b c = 0\}$. Then dim $(V_1 \cap V_2)$ is
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
- 7. In a bag there are 12 marbles, 11 of which are white and one is red. A child takes out 6 of them, the probability that one of these 6 is red is
 - (a) Strictly greater then $\frac{1}{2}$
 - (b) equal to $\frac{1}{2}$
 - (c) Strictly less then $\frac{1}{3}$
 - (d) equal to $\frac{1}{3}$
- 8. Two families of 3 members each have to be seated in a row, in how many ways can it be done so that all members of a family do not sit together?

- (a) 648
- (b) 504
- (c) 120
- (d) 324
- 9. Let T_1, T_2 be two linear transformations from a finite dimensional vector space V to another space W. Suppose that T_1, T_2 are onto. Then
 - (a) dim Ker T_1 =dim Ker T_2
 - (b) Ker T_1 = Ker T_2
 - (c) Ker T_1 strictly contained Ker T_2
 - (d) $T_1 = T_2$
- 10. The orthogonal trajectories of the family of curves $x+2y^2=c$ where c is a constant is
 - (a) y = 4x
 - (b) y = -4x
 - (c) $y = e^{4x}$
 - (d) $y = e^{-4x}$
- 11. A non zero vector common to the space spanned by (1,2,3), (3,2,1) and the space spanned by (1,0,1) and (3,4,3) is
 - (a) (1,2,3)
 - (b) (0,-2,-2)
 - (c) (3,2,0)
 - (d) (1,1,1)
- 12. A subset A of \mathbb{C} is said to be balanced if whenever $a \in A$ and $t \in R$, it is true that $ae^{it} \in A$. Which one of these four subsets is balanced?
 - (a) The elliptic region $\{x + iy | \frac{x^2}{4} + \frac{y^2}{9} \le 1\}$
 - (b) The upper half plane $\{x + iy | y > 0\}$
 - (c) The *Y*-axis $\{x + iy | y = 0\}$
 - (d) The annular region $\{x + iy | 1 \le x^2 + y^2 \le 2\}$
- 13. Let A_6 be the set of all positive integers for which 6 is not a factor. Then
 - (a) A_6 is closed under addition
 - (b) A_6 is closed under multiplication
 - (c) $A_6 \cup 6\mathbb{N} = \mathbb{N}$
 - (d) $A_6 \cup 6A_6 = \mathbb{N}$

- 14. Which is not a group homomorphism?
 - (a) $f: (\mathbb{R}, +) \to (\mathbb{R} \{0\}, .)$ given by $f(x) = xe^x$
 - (b) $f: (\mathbb{Q} \{0\}, .) \to (\mathbb{Q} \{0\}, .)$ given by f(x) = 2x
 - (c) $f:(\mathbb{N},+)\to(\mathbb{R},+)$ given by f(x)=x+|x|
 - (d) $f:(\mathbb{C},+)\to(\mathbb{C},+)$ given by $f(x)=2\overline{x}$
- 15. For a real number x, let $\lfloor x \rfloor$ denote the greatest integer less than or equal to x. Then
 - (a) $|xy| \ge |x||y|$ for all $x, y \in \mathbb{R}$
 - (b) $\lfloor xy \rfloor \leq \lfloor x \rfloor \lfloor y \rfloor$ for all $x, y \in \mathbb{R}$
 - (c) $|xy| \ge |x| + |y|$ for all $x, y \in \mathbb{R}$
 - (d) $|xy| \le |x| + |y|$ for all $x, y \in \mathbb{R}$
- 16. Let (x_n) be a sequence of positive real numbers. A sufficient condition for (x_n) to have no convergent subsequence is
 - (a) $|x_{n+2} x_{n+1}| > |x_{n+1} x_n| \, \forall n \in \mathbb{N}$
 - (b) $\forall i, j \in \mathbb{N}$, the set $\{n \in \mathbb{N} : |x_i x_n| < \frac{1}{i}\}$ is finite
 - (c) $\sum_{k=1}^{\infty} x_{n_k} = \infty$ for every increasing sequence (n_k) of natural numbers.
 - (d) none of the above
- 17. Let P be a real polynomial such that for $x \in \mathbb{R}$, P(x) = 0 iff x = 2 or 4.
 - (a) degree of P is 2
 - (b) P(3) < 0
 - (c) P'(x) = 0 for some x < 4
 - (d) P(x) is of the form $c(x-2)^n(x-4)^m$ where c is a constant
- 18. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function with f(0) = 0 and let (x_n) be a sequence in \mathbb{R} with $\lim_{n \to \infty} f(x_n) = 0$. Then
 - (a) $\lim_{n \to \infty} x_n = 0$
 - (b) $\lim_{k\to\infty} x_{n_k} = 0$, for some subsequence (x_{n_k})
 - (c) (x_n) is bounded
 - (d) none of the above
- 19. Number of generators of the group $(\mathbb{Z}_{36}, +)$ is
 - (a) 1
 - (b) 6

- (c) 12
- (d) 35
- 20. Let $x_n = \frac{1}{n^2 + 1}$ and $y_n = \frac{1}{n \log n}$. then
 - (a) Σx_n is convergent, Σy_n is divergent
 - (b) Σx_n is convergent, Σy_n is convergent
 - (c) Σx_n is divergent, Σy_n is convergent
 - (d) Σx_n is divergent, Σy_n is divergent
- 21. Let $A\Delta B$ denote the symmetric difference of A and B. Then $A\Delta B\Delta C$ is the same as
 - (a) $\{x \mid x \text{ belongs to all or none of the sets } A, B, C\}.$
 - (b) $\{x \mid x \text{ belongs to all or exactly one of the sets } A, B, C\}.$
 - (c) $\{x \mid x \text{ belongs to exactly one of the sets } A, B, C\}.$
 - (d) $\{x \mid x \text{ belongs to the complement of the union of } A, B \text{ and } C\}.$
- 22. Consider the following three conditions on a set $A \subset N$:

Condition (1): $A = \{ma + nb \mid m, n \in \mathbb{N}\}\$ for some $a, b \in \mathbb{N}$ with (a, b) = 1.

Condition (2): $\mathbb{N} - A$ is finite.

Condition (3): there exists $n_o \in \mathbb{N}$ such that $A = \{n \in N/n \ge n_o\}$. Then

- (a) $(2) \Rightarrow (3)$.
- (b) $(3) \Rightarrow (1) \Rightarrow (2)$.
- (c) $(1) \Rightarrow (2) \Rightarrow (3)$.
- (d) $(1) \Rightarrow (2)$.
- 23. The function $f(x) = x^x$ on $(0, \infty)$ has
 - (a) a local maximum at e^{-1} but no local minimum.
 - (b) a local maximum at e^{-1} and a local minimum at 1.
 - (c) two local maxima at 1 and e^{-1} but no local minimum.
 - (d) neither a local maximum nor a local minimum.
- 24. Let $f(x) = 1 x^{2/3}$ for $x \in [-1, 1]$. Then
 - (a) f'(c) = 0 for some $c \in (-1, 0)$.
 - (b) f'(c) = 0 for some $c \in (0, 1)$.
 - (c) f'(x) is never zero in (-1,0).
 - (d) f'(x) is zero in (0,1) at two points.
- 25. A vector of length 1 in \mathbb{R}^3 which is orthogonal to the vectors $\hat{i} + 2\hat{j} + 3\hat{k}$ and $4\hat{i} + 5\hat{j} + 6\hat{k}$ is

- (a) $-\frac{\hat{i}}{\sqrt{6}} + \frac{\sqrt{2}\hat{j}}{\sqrt{3}} + \frac{\hat{k}}{\sqrt{6}}$ (b) $\frac{\hat{i}}{\sqrt{6}} \frac{\sqrt{2}\hat{j}}{\sqrt{3}} + \frac{\hat{k}}{\sqrt{6}}$ (c) $-\frac{\hat{i}}{\sqrt{6}} + \frac{\sqrt{2}\hat{j}}{\sqrt{3}} \frac{\hat{k}}{\sqrt{6}}$ (d) $\frac{\hat{i}}{\sqrt{6}} + \frac{\sqrt{2}\hat{j}}{\sqrt{3}} \frac{\hat{k}}{\sqrt{6}}$