

CBSE TEST PAPER-05

MATHEMATICS (Class-10)

Chapter 2. Polynomials

(Questions 1marks)

- Q1. The value of quadratic polynomial $f(x) = 2x^2-3x-2$ at x = -2 is
- Q2. If the product of zeros of the polynomial a x^2 -6x-6 is 4. Find the value of a.
- Q3. Find the zeroes of the polynomial x^2 -1.
- Q4. The sum and product of the zeroes of a quadratic polynomial are $-\frac{1}{2}$ and -3 respectively.

What is the quadratic polynomial?

- Q5. Write a polynomial whose zeroes are $\sqrt{2}$ and $\sqrt{-2}$.
- Q6. Find the zeroes of the polynomial
- Q7. $2x^2-3x+5$ is a polynomial true or false justify.'
- Q8. What is the zeroes of the polynomial ax-b-0, a+b.
- Q9. Give examples of polynomials f(x). g(x) and r(x) whichq(x) + r(x0 and (i) deg r(x) = 0 (ii) deg f(x) = deg g(x) = 2 (iii) deg q(x) = deg r(x) = 1.

(Questions 2/3 marks)

- Q1. Obtain all the zeroes of the polynomial $x^2+7x+10$ any verify the relationship between the zeroes and its coefficients.
- Q2. If two zeroes of the polynomial of (x) = $x^2 3x 3 26x^2 + 138x 35$ are $2 \pm \sqrt{3}$ find other zeroes.
- Q3. If \propto and B are the zeroes of the quadratic polynomial $f(x) = x^2 = 2x+1$, then find $1/\alpha$ and $1/\beta$
- Q4. If \propto and β are the zeroes of the polynomial $f(x) = x^2 px + q$ such that $\alpha^2 + \beta^2$
- Q5. If \propto and β are the zeroes of the polynomial $f(x) = x^2 5x + k$ such that $= \propto -\beta 1$. Find value of k
- Q6. Check whither $2x^3 + 1$ is a factor of $2x^5 + 0x^4 + 6x^3 + 2x^2 + 5x + 1$.
- Q7. Obtain all the zeroes of the polynomial $f(x) = 3x^4 + 6x^3 + 2x^2 + 10x + 5$ if two of its zeroes are $\sqrt{5}$

$$-\frac{\sqrt{5}}{3}$$
 and $\frac{\sqrt{5}}{3}$

- Q8. If the polynomial $f(x) = x^4 + 6x^3 + 16x^2 25x 10$ is divided by another polynomial x2-2x_k, the remainder comes pout to be x+a, find k and a
- Q9. Find the polynomial of least degree which should be subtracted from the polynomial x^4 + $2x^3-4x^2+6x-3$ so that it is exactly divisible by x2-x+1.
- Q10 Divided $3x^2 x^3 3x = 5$ by x-1-x2 and verify the division algorithm.