CBSE TEST PAPER-05

MATHEMATICS (Class-10)

Chapter 2. Polynomials

(Questions 1marks)

Q1. The value of quadratic polynomial $f(x)=2 x^{2}-3 x-2$ at $x=-2$ is \qquad
Q2. If the product of zeros of the polynomial a $x^{2}-6 x-6$ is 4 . Find the value of a.
Q3. Find the zeroes of the polynomial $\mathrm{x}^{2}-1$.
Q4. The sum and product of the zeroes of a quadratic polynomial are $-\frac{1}{2}$ and -3 respectively.
What is the quadratic polynomial?
Q5. Write a polynomial whose zeroes are $\sqrt{2}$ and $\sqrt{ }-2$.
Q6. Find the zeroes of the polynomial
Q7. $\quad 2 \mathrm{x}^{2}-3 \mathrm{x}+5$ is a polynomial true or false justify.'
Q8. What is the zeroes of the polynomial $a x-b-0, a+b$.
Q9. Give examples of polynomials $f(x)$. $g(x)$ and $r(x)$ which \qquad $\operatorname{deg} \mathrm{r}(\mathrm{x})=0($ (ii) $\operatorname{deg} \mathrm{f}(\mathrm{x})=\operatorname{deg} \mathrm{g}(\mathrm{x})=2$ (iii) $\operatorname{deg} \mathrm{q}(\mathrm{x})=\operatorname{deg} \mathrm{r}(\mathrm{x})=1$.

(Questions 2/3 marks)

Q1. Obtain all the zeroes of the polynomial $x^{2}+7 x+10$ any verify the relationship between the zeroes and its coefficients.
Q2. If two zeroes of the polynomial of $(x)=x^{2} 3 \times 3-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$ find other zeroes.
Q3. If \propto and B are the zeroes of the quadratic polynomial $f(x)=x^{2}=2 x+1$, then find $1 / \alpha$ and $1 / \beta$
Q4. If \propto and β are the zeroes of the polynomial $f(x)=x^{2}-p x+q$ such that $\alpha^{2}+\beta^{2}$
Q5. If \propto and β are the zeroes of the polynomial $f(x)=x^{2}-5 x+k$ such that $=\alpha-\beta 1$. Find value of k
Q6. Check whither $2 x 3+1$ is a factor of $2 x^{5}+0 x^{4}+6 x^{3}+2 x^{2}+5 x+1$.
Q7. Obtain all the zeroes of the polynomial $f(x)=3 x^{4}+6 x^{3}+2 x^{2}+10 x+5$ if two of its zeroes are $-\frac{\sqrt{5}}{3}$ and $\frac{\sqrt{5}}{3}$
Q8. If the polynomial $f(x)=x^{4}+6 x^{3}+16 x^{2}-25 x-10$ is divided by another polynomial $x 2-2 x _k$, the remainder comes pout to be $\mathrm{x}+\mathrm{a}$, find k and a
Q9. Find the polynomial of least degree which should be subtracted from the polynomial $\mathrm{x}^{4}+$ $2 x^{3}-4 x^{2}+6 x-3$ so that it is exactly divisible by $x 2-x+1$.
Q10 Divided $3 x^{2}-x^{3}-3 x=5$ by $x-1-x 2$ and verify the division algorithm.

