S.E. (Prod/Prod Sand/Ind. Engg.) (II Sem.) EXAMINATION, 2010

Time : Four Hours

N.B. :- (i) Answer any three questions from each Section.
(ii) Answers to the two Sections should be written separate answer-books.
(iii) Neat diagrams must be drawn where necessary.
(iv) Figures to the right indicate full ${ }^{\text {oks }}$.
(v) Use of electronic pocket calcy ar is allowed.
(vi) Assume suitable data, if necessary.

1. (a) Define and explain th owing terms :
(i) Mechanism
(ii) Machine
(iii) Link

3

(iv) Kinematic Pair.

Give example of each.
(b) What roy understand by Degrees of Freedom? For a plane me hanism, derive an expression for Grubler's equation. [6]
(c) scribe Watt's straight line mechanism. What are the practical use of straight line mechanism ?
2. (a) What is meant by Kinematic pair ? How are kinematic pairs classified ? Give example of each type.
(b) How can cam-follower mechanism be converted into its equ vraent mechanism by using the equivalent linkage concer [6]
(c) Write a short note on "Ackermann Steering
3. (a) In a steam engine mechanism, shown in Fig the crank AB rotates at 200 rpm . Find the velocie of C, D, E, F and P. Also find the acceleration on the slider at C. The dimensions of the various links $\mathrm{A}=12 \mathrm{~cm}, \mathrm{BC}=48$ $\mathrm{cm}, \mathrm{CD}=18 \mathrm{~cm}, \mathrm{DE}=36$ n, $\mathrm{FF}=12 \mathrm{~cm}$ and $\mathrm{FP}=36$ cm .

Fis. 1
(b) An I.C. engine runs at 2000 rpm . The length of the connecting rod is 270 mm and crank radius is 60 mm . Determine at 30% of outstroke :
(i) Angular position of the crank
(ii) Linear velocity of the piston
(iii) Linear acceleration of the piston
(iv) Angular velocity and angular acceleration of the connecting rod.

> Or
4. (a) The crank and connecting rod of a recip scating engine are 200 mm and 700 mm respectively. He crank is rotating in clockwise direction at $120 \mathrm{rad} / \mathrm{s}$

Find :
(i) Velocity and accelerat on the piston
(ii) Velocity and acceler the midpoint of the connecting rod, and
(iii) Angular velocity angular acceleration of the connecting rod, at thentant when the crank is at 30° to I.D.C. Use Klein's construction.
(b) Fig. 2 s. a mechanism in which crank OA is rotating anticlokwise at $10 \mathrm{rad} / \mathrm{s}$. At this instant locate all its ICRs andere using ICR method find out instantaneous linear velocity lider D as well as angular velocity of link BC.
$O A=B C=40 \mathrm{~mm}, \mathrm{AB}=100 \mathrm{~mm} ; \mathrm{BD}=120 \mathrm{~mm}$.

5. (a) Derivation

Assuming "theory of proughing" of soft surface by a hard conical shaped asperity. Show that the volume of wear is given by 5

$$
\mathrm{Q}=\frac{2 \mathrm{~W} \cot \theta}{\pi \mathrm{P}_{0}}
$$

= load,
$=$ semicone angle of asperity,
$P_{0}=$ Yield pressure of soft material.
(b) Explain in detail various types of friction.
6. (a) Explain in detail the following :
(i) Coulomb's theory of interlocking
(ii) Stick-slip mechanism of friction.
(b) Write short notes on (any two) :
(i) Two body and three body abrasive wear.
(ii) Corrosive wear
(iii) Surface fatigue wear.

SECTION II

7. (a) Define and explain the followin ${ }^{\mathrm{ms}}$:
(i) Belt Drives
(ii) Slip of the belt
(iii) Open Belt Drives
(iv) Crossed Belt Drive
(b) Distinguish betwe iytial tension and centrifugal tension in a belt.
(c) The maxim angle of 45°, is 1500 N . The angle of lap is 170° and the coefficient of frip between the belt and material of the pulley is 0.27 . If the belt is running at $2 \mathrm{~m} / \mathrm{s}$, determine :

Net Driving Tension, and
(ii) Power transmitted by the pulley.

Neglect effect of centrifugal tension.
8. (a) Obtain an expression for the length of an open belt drive.
(b) An open belt running over two pulleys 24 cm and 60 cm diame er connects two parallel shafts 3 m apart and transmits 3.75 kW from the smaller pulley that rotates at 300 rpm . Cacfient of friction between the belt and the pulleys is and the safe working tension is $100 \mathrm{~N} / \mathrm{cm}$ width. Deter ine:
(i) Minimum width of the belt
(ii) Initial belt tensions, and
(iii) Length of the belt required
9. (a) What is the difference between a sple band brake and Differential band brakes ?
(b) Fig. 3 shows a differantia Band Brake of drum diameter 400 mm . The two enk of the band are fixed to the point on the opposite dulcrum of the lever at a distance of 50 mm and 165 mm from the fulcrum as shown in Figure. The braf to sustain a torque of 400 Nm . The coefficient of fric ion between the band and brake is 0.27 . The angle contact is 210° and the length of lever from the fulcrum 700 mm .

Determine :
(i) The force required at the end of the lever for the clockwise rotation of the drum.
(ii) Value of OB for the brake to be self-locking for camise rotation.

10. (a) Describe with help of a neat sketch the construction and working of Prony Brake absorption dynamometer.
(b) The maximum Kraking torque acting on a band and block brake shown in Fig. 4 is 2000 Nm . The band is lined with 15 blocks each onich subtends an angle of 12° at the centre of rotating The coefficient of friction between the band and block 0.3. The diameter of the drum is 680 mm whereas the thickness of blocks is 60 mm . Find the least force required at the end of the lever which is 480 mm long.

11. (a) Define and explain the forming terms :
(i) Inertia force, and
(ii) Inertia torque
(b) Write a short note on D-Alembert's principle.
(c) A connecting rod has mass 3 kg . For 50 oscillations it needs 45 second when suspended from small end and 40 seconds when Sunded from big end. The distance between the points nspension is 25 cm . Find the mass moment of inertia of 1. e connecting rod and position of its CG from the small [10]
12. (a) With the help of neat schematic diagram, derive frequency equation of Bifillar Suspension System.
(b) The connecting rod of an engine has a length equal to mm between centres and has a mass equal to 2.5 kg . ts centre of gravity is at 80 mm from the big end (crar P) and the radius of gyration about an axis through he gentre of gravity perpendicular to the plane of motion is 100 mm . Find :
(i) The two-mass dynamically equivalent when one mass is placed at the small end.
(ii) The correction couple, if the masses are placed at the two ends and the angliar acceleration of the connecting rod is $100 \mathrm{rad} / \mathrm{s}^{2}$ clock

