## Instrumentation Engineering Sample Questions Questions And Answers

## No. Question

A scalar field is given by $f=x^{2 / 3}+y^{2 / 3}$, where $x$ and $y$ are the Cartesian coordinates. The derivative of $f$ along the line $y=x$ directed away from the origin, at the point $(8,8)$ is
A) B)
$\frac{\mathrm{O} \overline{2}}{3} \frac{\mathrm{O} \overline{3}}{3}$
C) D)
$\frac{2}{\mathrm{O}}=\frac{3}{\mathrm{O} 2}=$
Correct Answer

A

2 Given the discrete-time sequence $\mathrm{x}[\mathrm{n}]=\left[2,0,-1,-3,4,1,-1, \mathrm{X}\left(\mathrm{e}^{\mathrm{jp}}\right)\right.$ is

Options
A) 8 B) $6 p$
C) 8 p D) 6

Correct
Answer

A microscope uses a micro-objective 10X, numerical aperture 0.25 and an eyepiece of focal length of 25 mm . The magnification of the microscope is
A) 25
B) 50
C) 100 D) 125

Correct
Answer

The output from a $633 \mathrm{~nm} \mathrm{He}-\mathrm{Ne}$ laser comes out from the mirror with a beam
4 diameter of 1 mm and diverges to the far field. It is brought to a focus by a convex lens of focal length of 17 mm . The spot size diameter of the beam at the focal point is
A) 20 mm
B) 26 m m
C) 52 m m D$) 13 \mathrm{~m} \mathrm{~m}$

Correct C

A minimal microcomputer system is constructed using INTEL 8085

Correct
Answer

Bilinear transformation avoids the problem of aliasing encountered with the use of impulse-invariance through
A) mapping the entire imaginary axis of the s-plane on to the unit circle in the z plane
C) mapping zeros of the left half of the splane inside the unit circle in the z-plane
B) pre-filtering the input signal to impose bank-limitedness
D) up-sampling the input signal so that the bandwidth is reduced

Correct
Answer

Two identical 2-port networks with y-parameters $y_{11}=-y_{12}=-y_{21}=y_{22}$ IS are connected in cascade. The overall y-parameters will satisfy the condition

$$
\text { B) } y_{12}=-
$$

A) $\mathrm{y}_{11}=\mathrm{IS} \frac{1}{2}$

S
C) $\mathrm{y}_{21}=-2 \mathrm{~S}$ D) $\mathrm{y}_{22}=\mathrm{I} S$

Correct
Answer
A

A temperature sensor having a range of $0-100^{\circ} \mathrm{C}$ has a worst case accuracy specification of $\pm 1.0 \%$ of true value or $\pm 0.3 \%$ of full scale, whichever is
8 higher. The sensitivity of the sensor is experimentally obtained by taking its readings at true temperatures $25^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$. The maximum error in sensitivity, expressed as percentage of its ideal value is

Options A) $\pm 0.105 \% \mathbf{B}) \pm 0.21 \%$
C) $\pm 1.05 \% \quad$ D) $\pm 2.1 \%$

Correct
C
Answer

A quartz crystal (Young's modulus, $\mathrm{E}=9 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ ) with piezo-electric 9 properties has diameter of 10 mm and thickness of 2 MM . Its voltage sensitivity constant is $4500 \mathrm{~V} / \mathrm{mm}$. If the voltage output is 127.3 V , the applied load is approximately

## A) B)

$100 \mathrm{~N} \quad 200 \mathrm{~N}$
C) D)
127.3 N 6.4 N

Correct Answer
$10 \quad \frac{1}{2 \mathrm{~s}}$
+0.5 s as w tends to infinity
A) magnitude of $\mathrm{G}(\mathrm{jw})$ tends to zero and phase angle of $\mathrm{G}(\mathrm{jw})$ tends to zero
B) magnitude of $\mathrm{G}(\mathrm{jw})$ tends to infinity and phase angle of G(jw) tends to zero C) magnitude tends of $G(j w)$ to infinity and phase angle of $\mathrm{G}(\mathrm{jw})$ tends to $-90^{\circ}$
D) magnitude tends of $\mathrm{G}(\mathrm{jw})$ to zero and phase angle of $G(j w)$ tends to $+90^{\circ}$

Options
A

The transfer function of a PID Controller is given by $\mathrm{G}(\mathrm{s})=4(1+$ -

## Correct

 AnswerB

An oscilloscope screen displays a line inclined at $45^{\circ}$. Its Y-input is a sine wave of frequency $f$ then the $X$-input should be

## Options


B) sine wave of frequency $f$ and $45^{\circ}$ phase shift with the Y-input
C) sine wave of frequency f and $90^{\circ}$ phase shift with the Y-input
D) saw-tooth wave of frequency $f$

If the Fourier transform of $\mathrm{x}[\mathrm{n}]$ is $\mathrm{X}\left(\mathrm{e}^{\mathrm{jw}}\right)$ then the Fourier transform of $(-$ 1) $\mathrm{x}[\mathrm{n}]$ is
A) $(-\mathrm{j})^{\mathrm{w}} \mathrm{X}\left(\mathrm{e}^{\mathrm{jw}}\right)$
B) $(-1)^{w} \mathrm{X}\left(\mathrm{e}^{\mathrm{jw}}\right)$
D)

Options
C) $X\left(e^{(j(w-p)}\right) \frac{d}{d w}$ ( $\mathrm{X}\left(\mathrm{e}^{\mathrm{jw}}\right)$ )

Correct
Answer

One method of measuring the radius of an arc (r) is to allow a roller of radius (r) to oscillate to and fro on the arc and measure the average time per oscillation, $T$ seconds . The roller will then have a linear acceleration of $2 \mathrm{~g} / 3$ where $g$ is acceleration due to gravity in such an experiment, the value of radius of arc can be found from the expression:
A) $\left.\left(\mathrm{T}^{2} \mathrm{~g} / 6 \mathrm{p}^{2}\right)+\mathrm{r} \mathbf{B}\right)\left(\mathrm{T}^{2} \mathrm{~g} / 6 \mathrm{p}^{2}\right)-\mathrm{r}$
C) $\left(\mathrm{T}^{2} \mathrm{~g} / 6 \mathrm{p}^{2}\right) \quad$ D) $\left(6 \mathrm{r}^{2} / \mathrm{T}^{2} \mathrm{~g}\right)$

Correct
Answer
A

The following terms used in the context of an instrument are numbered as shown :
(1) accuracy, (2) sensitivity, (3) precision and (4) resolution

Match these with their possible definitions listed below
14
P. Repeatability of readings on successive observations
Q. Smallest perceptible change in the output
R. Deviation of the output from the true value

S . Minimum value of the input from the true value
T. Ratio of the change in the instrument reading to the change in the measured variable.

Options
А) $1-\mathrm{P}, 2-\mathrm{Q}, 3-\mathrm{R}, 4-\mathrm{S}$ B) $1-\mathrm{S}, 2-\mathrm{Q}, 3-\mathrm{P}, 4-\mathrm{T}$
C) 1-R, 2-T, 3-P, 4-Q D) 1-T, 2-Q, 3-P, 4-R

Correct
Answer
C
A) B) Candela
coulomb
Options
C) Kelvin
D) mol .

Correct
C
Answer

An amplifier of gain 10, with a gain-bandwidth product of 1 MHz and slew rate of $0.1 \mathrm{~V} / \mathrm{ms}$ is fed with a 10 KHz symmetrical square wave of $\pm 1 \mathrm{~V}$ amplitude. Its output will be

Options
A) $\pm 10 \mathrm{~V}$ amplitude square wave $\quad$ B) $\pm 2.5 \mathrm{~V}$ amplitude square wave
C) $\pm 10$ Vamplitude triangular wave $\mathbf{D}) \pm 2.5 \mathrm{~V}$ amlitude triangular wave

Correct
Answer

17
$\mathrm{V}_{1}$ and $\mathrm{V}_{2}$ are the input voltages of an instrumentation amplifier. The output of the instrumentation amplifier is found to be $100\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right)+10^{-4}\left(\mathrm{~V}_{1}+\mathrm{V}_{2}\right)$. The gain and the common mode rejection ratio (CMRR) of the instrumentation amplifier respectively are
А) $(50,60 \mathrm{~dB})$ В) $(50,120 \mathrm{~dB})$

Options
C) $(100,60 \mathrm{~dB})$ D) $(100,120 \mathrm{~dB})$

Correct
C
Answer

18 The sequence $x[n]$ whose $z$-transform is $X[z]=e^{(1 / Z)}$ is

| A) | B) |
| :--- | :--- |
| $\frac{1}{n!}$ | $\frac{1}{-n!}$ |

Options $u[n] \quad u[-n]$
C) $(-1)^{\mathrm{n}}$ D)
$\frac{1}{n!} \quad \frac{1}{-(n+1)!}$

```
u[n] u[-n-1]
```

The time taken by an ionized atom, of mass mkg and charge e Coulombs, pulsed into a field-free region with V volts, to reach a detector L meters away is

Options

D)


Correct
Answer
B

20 in the period mode and the input to the timer-counter is a square wave of frequency 2 kHz . The display of the timer-counter will show a value

Options
$\begin{array}{lll}\text { A) } 200 & \text { B) } 2000\end{array}$
C) 5000 D) 50000

Correct
Answer
C

