[This question paper contains 5 printed pages]

Your Roll No

7240 J

M.Sc./II

OPERATIONAL RESEARCH—Course XII

(Applied Statistics)

(Admissions of 2001 and onwards)

Time . 3 Hours M

Maximum Marks

75

(Write your Roll No on the top immediately on receipt of this question paper)

Answer six questions in all, selecting three questions from each Section

All questions carry equal marks

Use a separate answer sheet for each Section

Section A

1 (a) A regression model is specified as

$$Y_i = \beta X_i + u_i$$

where u and X satisfy all the basic assumptions three estimators of β have been proposed

$$\hat{\beta}_1 = \frac{\overline{Y}}{\overline{X}}, \hat{\beta}_2 = \frac{\sum X_i Y_t}{\sum X_i^2}, \hat{\beta}_3 = \frac{\sum (X_t - \overline{X})(Y_t - \overline{Y})}{\sum (X_t - \overline{X})^2}$$

- (1) Show that all three estimators are unbiased
- (11) Derive the variance of each of the three

PTO

estimators and determine which one (if any) has smallest variance

(b) You are the given the following model in deviation form

$$Y_i = \beta_1 + \beta_2 X_{i2} + \beta_3 X_{i3} + u$$

with sample data n = 100, $\Sigma X_{12}^2 = 30$, $\Sigma X_{23}^2 = 3$,

$$\Sigma X_{i,2}Y_i = 30$$
, $\Sigma X_{i,3}Y_i = 20$, $\Sigma X_{i,2}X_{i,3} = 0$

- (i) Compute the OLS estimators of β_1 , β_2 and β_3 .
- (ii) Test the hypothesis that X_2 and X_3 have no influence on Y at 5% level of significance
- 2 (a) Consider the following demand for money function

$$M_D = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + u$$

where $X_1 = \gamma_t = interest$ rate at time t

 $X_2 = r_{t-1} = logged interest rate$

 $X_3 = \gamma_t - \gamma_{t-1} = 0 = measure of expectation$

based on most recent

change in y

Show that these exist perfect multi collinearity between the variables

(b) Assume that the market mechanism of a given commodity is described by the following system of simultaneous equations

$$D = a_0 + a_1 P + a_2 Y + u_1$$

$$S = b_0 + b_1 P + b_2 W + u_2$$

$$D = S$$

3

where D = quantity demanded

S = quantity supplied

P = price, Y = income,

W = index of weather conditions,

Y and W are exogenous variable

Obtain the estimates (if any) of the structural coefficients

- (a) For a heteroscandastic model assume that $\sigma_i^2 = \sigma^2 K t$, where σ^2 is a constant and K t are known weights. Write the expressions for the variance of $\hat{\beta}_t$ by OLS and GLS method, what can you say about the relationship of var (β_{γ}) under homoscandasticity and heteroscandasticity?
- (b) Show that least square estimator of $\hat{\beta}_2$ in $Y = \beta_1 + \beta_2 X + u$ has minimum variance in the class of linear unbiased estimations. Does the result had for $\hat{\beta}_1$ also ?

- 4 Write short notes on any three of the following
 - (1) The Almon Approach to Distributed log models
 - (11) Durbin's h-test
 - (iii) Two-stage Least Square Method
 - (iv) Weighted Least Square Method

Section B

- 5 (a) Define Time Series and its components Describe the Ratio to moving average method for determining seasonal indices
 - (b) Explain how will you fit the following curve

$$Y = \frac{a}{1 + be^{-ct}}(a, b, c) > 0$$

to given time series data when

- (i) a is known, b and c are unknown
- (ii) a, b and c are unknown
- 6 Below are given the figure of Production (in thousands quintal) of a certain product

Year	Production
1991	55
1992	66
1993	72
1994	78
1995	85
1996	87
1997	90

(5) 7240

- (i) Fit a straight line by "Least Square Method" and estimate the trend values
- (ii) What is the monthly increase in the production of the product ?
- 7 (a) Define and explain Type I and Type II errors in the contest of control charts. How does the choice of control limit influence these errors.
 - (b) Determine the control units for the U-chart
 - (c) Define Capability Ratio Find the process capability Indices $C_{\rm P}$ and $C_{\rm PK}$ and compare them
- 8 (a) Discuss Single and Double Sampling Plan Design Single Sampling Plan that satisfies a Producer's Risk of 4% for lots that are 1.2% non-conforming, take acceptance number C = 3, 5, 6.
 - (b) Calculate the control limits for \overline{X} and R-charts From a manufacturing process, 20 subgroups of moving samples of 5 each are observed and \overline{X} and R values are calculated for subgroups it is found that for 20 subgroups $\Sigma \overline{X} = 8763$ and

 $\Sigma R = 241 \text{ cm}$

Compute control limits for \bar{X} and R-Charts