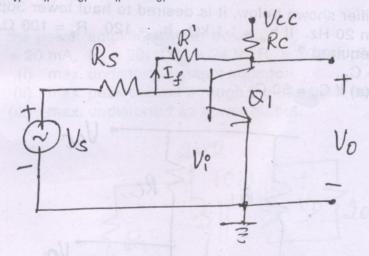
8

Electronic Devices & Circuits -IL 3p.m. to6pm

Con. 2580-09.

VR-3825

(REVISED COURSE)

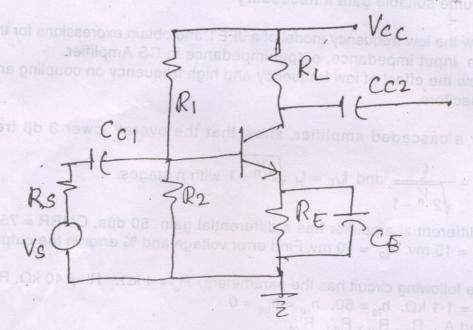

(3 Hours) [Total Marks: 100

N.B.: (1) Question Nos. 1 and 2 are compulsory.

- (2) Attempt three questions from the remaining five questions.
- (3) Assume suitable data if necessary.
- 1. (a) Draw the low frequency model of a JFET and obtain expressions for the voltage gain, input impedance, output impedance in CS Amplifier.
 - (b) Show the effect of low frequency and high frequency on coupling and bypass capacitors.
- (a) For a cascaded amplifier, show that the overall lower 3 dβ frequency,

$$f_{LT} = \frac{f_L}{\sqrt{2^{\frac{1}{n}} - 1}}$$
 and $f_{HT} = f_H \sqrt{2^{\frac{1}{n}} - 1}$ with n stages.

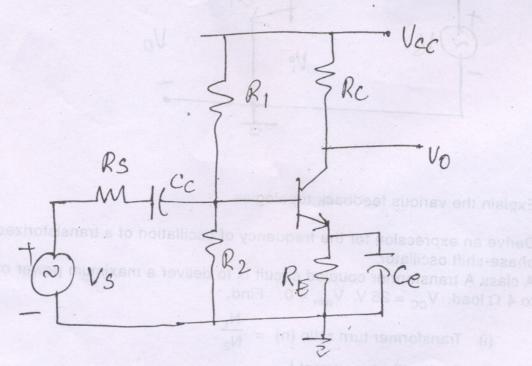
- (b) A differential amplifier has a differential gain 50 d β s, CMRR = 75 d β s. 10 $V_{s1} = 15$ mv. $V_{s2} = 10$ mv. Find error voltage and % error in the output voltage.
- (a) The following circuit has the parameters. $R_c = 4 \text{ k}\Omega$. $R' = 40 \text{ k}\Omega$, $R_s = 10 \text{ k}\Omega$, $h_{ie} = 1.1 \text{ k}\Omega. \ h_{fe} = 50, \ h_{re} = h_{oe} = 0.$ Find A_{vf}, R_{if}, R_{of}, R_{if}, R'_{of}


- (b) Explain the various feedback topologies.
- (a) Derive an expression for the frequency of oscillation of a transistorized RC 12 phase-shift oscillator.
 - (b) A class A transformer coupled circuit is to deliver a maximum power of 6W 8 to 4 Ω load. $V_{CC} = 25 \text{ V}$. $V_{min} = 0$. Find,
 - Transformer turn ratio (n) = $\frac{N_1}{N_2}$
 - (ii) Peak collector current I_m.
 - (iii) $Q(I_C, V_{CF})$
 - (iv) Conversion efficiency.

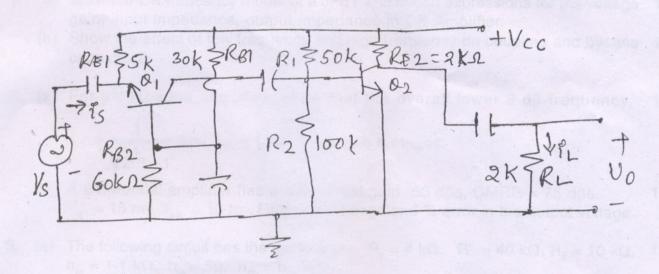
(a) Explain the operation of a Schmitt Trigger with a neat sketch.

10

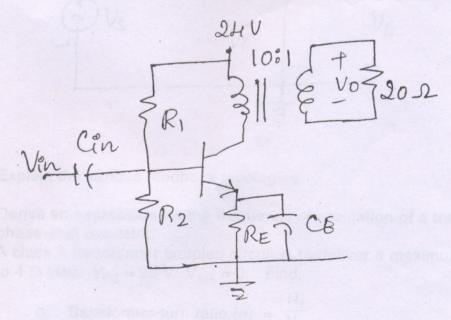
TURN OVER


- 6. (a) For the following circuit, $V_{cc}=12$ V. $R_L=4.7$ k Ω , $R_E=1$ k Ω , $R_1=15$ k Ω , $R_2=2.2$ k Ω , $R_s=600$ Ω . $h_{fe}=100$, $h_{ie}=1$ K. Find,
 - Calculate mid frequency voltage gain $\frac{V_0}{V_1}$ and $\frac{V_0}{V_1}$
 - Calculate the size of bypass capacitor if $f_L = 50$ Hz. (ii)
 - Calculate the size of coupling capacitor if $f_1 = 50$ Hz.

(b) For the amplifier shown below, it is desired to haul tower 3dβ frequency of not more than 20 Hz. If $h_{ie} = 1.1 \text{ k}\Omega$. $h_{fe} = 120$, $R_s = 100 \Omega$. What is the value of C_C required ?


Assume $C_e = C_C$

(b) Repeat part (a) if C_e = 50 C_C



8

- 7. (a) The following circuit has the parameters— $h_{ib} = 50 \ \Omega, \ h_{fb} = -0.99, \ h_{rb} = h_{ob} = 0$ $h_{ie} = 500 \ \Omega, \ h_{fe} = -100, \ h_{re} = 1 \ and \ h_{oc} = 0.$
 - (i) Find the overall voltage gain = $\frac{V_0}{V_s}$
 - (ii) Find the overall current gain = $\frac{i_L}{i_S}$

- (b) For the power amplifier shown below, $I_{CQ}=20$ mA, $R_{L}=20\Omega$ $V_{cc}=24$ V., $R_{e}=200$ Ω . Find
 - (i) max. undistorted output voltage.
 - (ii) max. peak current through the transistor collector.
 - (iii) max. undistorted ac power output.

