Code: AE01/AC01/AT01 Time: 3 Hours

DECEMBER 2010

Subject: MATHEMATICS-I Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

 (A) a=b
 (B) a=2b

 (C) b=2a
 (D) a+b=0

f.	The solution of differential equation $\frac{d^2}{dx}$	$\frac{y}{2} + 9y = \cos 3x$ is
		(B) $y = c_1 \cos 3x + c_2 \sin 3x + \frac{x}{6} \cos 3x$ (D) $y = (c_1 + c_2 x)e^{-3x} + \cos 3x$
g.	The rank of $\begin{bmatrix} 1 & 2 & 3 & 2 \\ 1 & 4 & 2 & 5 \\ 2 & 6 & 5 & 7 \end{bmatrix}$ is	
	(A) 1 (C) 3	(B) 2(D) 4
h.	The sum and product of eigen values of	$\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ are respectively
	(A) (3,5)(C) (2,4)	 (B) (5,3) (D) (4,2)
i.	The value of $\frac{d}{dx}(x^2 J_2(x))$ is	
	(A) $xJ_0(n)$ (C) $xJ_1(n)$	(B) $x^2 J_0(n)$ (D) $x^2 J_1(n)$
j.	The value of $\int_{1}^{1} P_2(n) dn$ is	
	$ \begin{array}{c} -1 \\ (A) & 0 \\ (C) & 2 \end{array} $	 (B) 1 (D) 3

Answer any FIVE Questions out of EIGHT Questions. Each Question carries 16 marks.

Q.2		State and prove Euler's theorem.	(8)
	b.	If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -\frac{9}{(x + y + z)^2}$	(8)
Q.3	a.	Find the maximum value of $x^m y^n z^p$, given that $x+y+z=a$	(8)

b. Expand $e^{x} \log_{e}(1+y)$ in powers of x and y up to second degree terms. (8)

Q.4 a. Evaluate
$$\iint xy(x+y)dxdy$$
, over the area between $y=x^2$ and $y=x$ (8)

b. Solve the differential equation
$$(1 + x^2)\frac{dy}{dx} + 2xy = x^2$$
 (8)

Q.5 a. Solve the differential equation
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{2x} + \sin 2x$$
 (8)

b. Use method of undetermined coefficients to solve
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = x^2 + e^x$$
 (8)

Q.6 a. Solve the differential equation
$$x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = x + \sin x$$
 (8)
 $\begin{bmatrix} 2 & 1 & -1 \end{bmatrix}$

b. Use elementary row transformations to find inverse of
$$\begin{bmatrix} 0 & 2 & 1 \\ 5 & 2 & -3 \end{bmatrix}$$
 (8)

- **Q.7** a. Find the values of 'a' and 'b' for which the equations x+ay+z=3, x+2y+2z=b, x+5y+3z=9 are consistent. When will these equations have a unique solution? (8)
 - b. Define Hermitian and Skew-Harmitian matrices. Show that everysquare matrix can be written as the sum of a Hermitian and Skew-Harmitian matrices. (8)

			2	2	1]	
Q.8	a.	Find a matrix P which transforms the matrix				
			1	2	2	
		form.				(8)

b. Solve in series the differential equation
$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$$
 (8)

Q.9 a. Show that
$$J_4(x) = \left(\frac{48}{x^3} - \frac{8}{x}\right) J_1(x) + \left(1 - \frac{24}{x^2}\right) J_0(x)$$
 (8)

b. State and prove Radrigues formula. (8)