Code: AE01/AC01/AT01
Time: 3 Hours

DECEMBER 2010

Subject: MATHEMATICS-I
Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The value of $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{x y}{x^{2}+y^{2}}$ is
(A) 0
(B) 1
(C) -1
(D) does not exists
b. If $\mathrm{z}=\phi(\mathrm{x}+\mathrm{ct})+\psi(\mathrm{x}-\mathrm{ct})$, then $\frac{\partial^{2} \mathrm{z}}{\partial \mathrm{t}^{2}}-\mathrm{c}^{2} \frac{\partial^{2} \mathrm{z}}{\partial \mathrm{x}^{2}}$ is equal to
(A) 0
(B) 1
(C) c
(D) c^{2}
c. The value of $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} d y d x$ is equal to
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{8}$
d. The expansion of $e^{x} \sin y$ in powers of x and y up to first degree terms is
(A) x
(B) y
(C) $\mathrm{x}+\mathrm{y}$
(D) $\mathrm{x}-\mathrm{y}$
e. The differential equation $\left(x+x^{2}+a y^{2}\right) d x+\left(y^{3}-y+b x y\right) d y=0$ is exact if
(A) $a=b$
(B) $a=2 b$
(C) $\mathrm{b}=2 \mathrm{a}$
(D) $\mathrm{a}+\mathrm{b}=0$
f. The solution of differential equation $\frac{d^{2} y}{d x^{2}}+9 y=\cos 3 x$ is
(A) $y=\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right)+\frac{x}{6} \sin 3 x$
(B) $y=c_{1} \cos 3 x+c_{2} \sin 3 x+\frac{x}{6} \cos 3 x$
(C) $y=\left(c_{1}+c_{2} x\right) e^{3 x}+\sin 3 x$
(D) $y=\left(c_{1}+c_{2} x\right) e^{-3 x}+\cos 3 x$
g. The rank of $\left[\begin{array}{llll}1 & 2 & 3 & 2 \\ 1 & 4 & 2 & 5 \\ 2 & 6 & 5 & 7\end{array}\right]$ is
(A) 1
(B) 2
(C) 3
(D) 4
h. The sum and product of eigen values of $\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ are respectively
(A) $(3,5)$
(B) $(5,3)$
(C) $(2,4)$
(D) $(4,2)$
i. The value of $\frac{d}{d x}\left(x^{2} J_{2}(x)\right)$ is
(A) $\mathrm{xJ}_{0}(\mathrm{n})$
(B) $\mathrm{x}^{2} \mathrm{~J}_{0}(\mathrm{n})$
(C) $\mathrm{xJ}_{1}(\mathrm{n})$
(D) $\mathrm{x}^{2} \mathrm{~J}_{1}(\mathrm{n})$
j. The value of $\int_{-1}^{+1} \mathrm{P}_{2}(\mathrm{n}) \mathrm{dn}$ is
(A) 0
(B) 1
(C) 2
(D) 3

Answer any FIVE Questions out of EIGHT Questions. Each Question carries 16 marks.

Q. 2 a. State and prove Euler's theorem.
b. If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, show that $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} u=-\frac{9}{(x+y+z)^{2}}$
Q. 3 a. Find the maximum value of $x^{m} y^{n} z^{p}$, given that $x+y+z=a$
b. Expand $e^{x} \log _{e}(1+y)$ in powers of x and y up to second degree terms.
Q. 4 a. Evaluate $\iint x y(x+y) d x d y$, over the area between $y=x^{2}$ and $y=x$
b. Solve the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=x^{2}$
Q. 5 a. Solve the differential equation $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=e^{2 x}+\sin 2 x$
b. Use method of undetermined coefficients to solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=x^{2}+e^{x}$
Q. 6 a. Solve the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=x+\sin x$
b. Use elementary row transformations to find inverse of $\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & 2 & 1 \\ 5 & 2 & -3\end{array}\right]$
Q. $7 a$. Find the values of ' a ' and ' b ' for which the equations $x+a y+z=3$, $x+2 y+2 z=b, x+5 y+3 z=9$ are consistent. When will these equations have a unique solution?
b. Define Hermitian and Skew-Harmitian matrices. Show that everysquare matrix can be written as the sum of a Hermitian and Skew-Harmitian matrices.
Q. 8 a. Find a matrix P which transforms the matrix $\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ to the diagonal form.
b. Solve in series the differential equation $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$
Q. 9 a. Show that $J_{4}(x)=\left(\frac{48}{x^{3}}-\frac{8}{x}\right) J_{1}(x)+\left(1-\frac{24}{x^{2}}\right) J_{0}(x)$
b. State and prove Radrigues formula.

