AMIETE - ET/CS/IT (OLD SCHEME)

Code: AE01/AC01/AT01
Time: 3 Hours

DECEMBER 2009

Subject: MATHEMATICS-I
Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The value of limit $\lim _{(x, y) \rightarrow(1,0)} \frac{(x-1) \sin y}{y \ln x}$ is
(A) 0
(B) 1
(C) -1
(D) limit does not exist
b. If $u(x, y)=\cos ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right), 0<x, y<1$ then
(A) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=-\frac{1}{2} \cot u$
(B)
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \cot u$
(C)
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=-\frac{1}{2} \tan u$
(D)
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$
c. The value of the integral $\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \mathrm{rdrd} \mathrm{\theta}$ is
(A) π
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{4}$
(D) 0

$$
\iint_{D} \mathrm{e}^{\mathrm{x}^{2}} \mathrm{dxdy}
$$

d. The value of integral R
where \mathbf{R} is the region given by $\mathrm{R}: 2 \mathrm{y} \leq \mathrm{x} \leq 2, \quad 0 \leq \mathrm{y} \leq 1$ equal to
(A) $\frac{1}{2}\left(\mathrm{e}^{2}-1\right)$
(B) $-\frac{1}{2}\left(\mathrm{e}^{2}-1\right)$
(C) $\frac{1}{4}\left(e^{4}-1\right)$
(D) $\frac{1}{2}\left(\mathrm{e}^{4}-1\right)$

The solution of the differential equation $y d x-x d y+e^{1 / x} d x=0$, is given by
(A) $y+x e^{1 / x}=c y$
(B) $y+x e^{2 / x}=c y$
(C) $y+x e^{1 / x}=c x$
(D) $x+x e^{1 / x}=c y$
e. The particular integral of the differential equation $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+4 y=65 \sin 2 x$ is
(A) $\frac{13}{2} \cos 2 x$
(B) $\frac{13}{2} \sin 2 x$
(C) $-\frac{13}{2} \cos 2 x$
(D) $-\frac{13}{2} \sin 2 x$
f. The product of the eigen values of $\left(\begin{array}{ccc}1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2\end{array}\right)$ is equal to
(A) 6
(B) -8
(C) 4
(D) -6
g. Let T be a linear transformation from R^{3} into R^{2} defined by the relation $T x=A x, A=$ $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$. The value of $T x$ when x is given by $[345]^{T}$
(A) $\left[\begin{array}{l}62 \\ 26\end{array}\right]$
(В) $\left[\begin{array}{l}26 \\ 62\end{array}\right]$
(C) $\left[\begin{array}{l}65 \\ 25\end{array}\right]$
(D) $\left[\begin{array}{l}25 \\ 65\end{array}\right]$
h. The value of $P(x)=2 P_{2}(x)+4 P_{1}(x)+5 P_{0}(x)$ as a polynomial in x is equal to
(A) $3 x^{2}-4 x-4$
(B) $3 x^{2}+4 x-4$
(C) $3 x^{2}-4 x+4$
(D) $3 x^{2}+4 x+4$
i. The value of the $J_{3}(x)$ is
(A) $\left(\frac{8}{x^{2}}-1\right) J_{1}(x)-\frac{4}{x} J_{0}(x)$
(B) $\left(\frac{8}{x^{2}}-1\right) J_{1}(x)+\frac{4}{x} J_{0}(x)$
(C) $\left(\frac{8}{x^{2}}+1\right) J_{1}(x)-\frac{4}{x} J_{0}(x)$
(D) $\left(\frac{8}{x^{2}}+1\right) J_{1}(x)+\frac{4}{x} J_{0}(x)$

Answer any FIVE Questions out of EIGHT Questions. Each Question carries 16 marks.

Q. 2 a. Show that the function $\quad 0, \quad(x, y)=(0,0) \quad$ is continuous at $(0,0)$

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{2}+y^{2}}{|x|+|y|}, & (x, y) \neq(0,0) \\
0, & (x, y)=(0,0)
\end{array}\right.
$$

but its partial derivatives f_{x} and f_{y} does not exist at $(0,0)$.
(8)
b. If $u=a^{3} x^{2}+b^{3} y^{2}+c^{3} z^{2}$ where $\mathrm{x}^{-1}+\mathrm{y}^{-1}+\mathrm{z}^{-1}=1$, show that the stationary value of u is given by $x=\left(\sum a\right) / a, y=\left(\sum b\right) / b, z=\left(\sum c\right) / c$.
Q. 3 a. Expand $f(x, y)=\tan ^{-1}(y / x)$, in powers of $(x-1)$ and $(y-1)$ upto third degree terms. Hence compute f $(1.1,0.9)$ approximately.
b. Evaluate $\iint_{D} x y \sqrt{1-x-y} d x d y$ where D is the region bounded by $\mathrm{x}=0$, $y=0, x+y=1$, using the transformation $x+y=u, y=u v$.
Q. 4 a. Solve the differential equation $3 x\left(1-x^{2}\right) y^{2} \frac{d y}{d x}+\left(2 x^{2}-1\right) y^{3}=a x^{3}$.
b. Solve by the method of undetermined coefficients, $y^{\prime \prime}-y=e^{3 x} \cos 2 x-e^{2 x} \sin 3 x$. (8)
Q. 5 a. Find the general solution of the equation $y^{\prime \prime}-3 y^{\prime}+2 y=x e^{3 x}+\sin 2 x$.
b. Reduce the matrix $A=\left[\begin{array}{ccc}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array}\right]$ to the diagonal form.
Q. 6 a . If the following system has non-trivial solution, prove that $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ or $\mathrm{a}=\mathrm{b}=$ $c ; a x+b y+c z=0, b x+c y+a z=0, c x+a y+b z=0$.
b. Prove that the matrix $A=\left[\begin{array}{cc}(1+i) / 2 & (-1+i) / 2 \\ (1-i) / 2 & (1+i) / 2\end{array}\right]$ is unitary and find A^{-1}
Q. 7 a. Test for consistency the following system of equations, and if consistent, solve them: $x_{1}+2 x_{2}-x_{3}=3 ; 3 x_{1}-x_{2}+2 x_{3}=1 ; 2 x_{1}-2 x_{2}+3 x_{3}=2 ; x_{1}-x_{2}+x_{3}=-1$ (8)
b. If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ show that $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} u=\frac{-9}{(x+y+z)^{2}}$.
Q. 8 a. Find the power series solution about the origin of the equation $x y^{\prime \prime}+y^{\prime}+x y=0$.
b. Prove that $J_{n}{ }^{\prime \prime}(x)=\frac{1}{4}\left[J_{n-2}(x)-2 J_{n}(x)+J_{n+2}(x)\right]$
Q. 9 a. Show that $\int_{-1}^{1}\left(1-x^{2}\right) P_{m}^{\prime}(x) P_{n}^{\prime}(x) d x=0$.
b. Solve $\left\{y\left(1+\frac{1}{x}\right)+\cos y\right\} d x+(x+\log x-x \sin y) d y=0$

