AMIETE - ET/CS/IT (OLD SCHEME)

Code: AE01/AC01/AT01

Time: 3 Hours

DECEMBER 2009

Subject: MATHEMATICS-I

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. The value of limit
$$(x,y) \rightarrow (1,0) \frac{(x-1)\sin y}{y \ln x}$$
 is

(A) 0

(B) 1

(C) -1

(**D**) limit does not exist

$$u(x,y) = \cos^{-1}\!\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right), 0 < x, y < 1$$
 then

- (A) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -\frac{1}{2} \cot u$
- (B) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \cot u$
- $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -\frac{1}{2} \tan u$
- $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \tan u$

$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} r \, dr \, d\theta$$

- c. The value of the integral 0 0 is
 - (**A**) π

(B) $\frac{\kappa}{2}$

(C) $\frac{\pi}{4}$

(D) 0

$$\iint e^{x^2} dx dy$$

- d. The value of integral R when equal to
- where **R** is the region given by R: $2y \le x \le 2$, $0 \le y \le 1$

(A) $\frac{1}{2}(e^2 - 1)$

(B) $-\frac{1}{2}(e^2-1)$

(C)
$$\frac{1}{4} (e^4 - 1)$$

(D)
$$\frac{1}{2} (e^4 - 1)$$

The solution of the differential equation $y dx - x dy + e^{1/x} dx = 0$, is given by

(A)
$$y + x e^{1/x} = cy$$

(C) $y + x e^{1/x} = cx$

(B)
$$y + x e^{2/x} = cy$$

(D) $x + x e^{1/x} = cy$

(C)
$$y + x e^{1/x} = cx$$

(D)
$$x + x e^{1/x} = cy$$

e. The particular integral of the differential equation
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 4y = 65\sin 2x$$
 is

(A)
$$\frac{13}{2}\cos 2x$$
(C)
$$-\frac{13}{2}\cos 2x$$

$$\mathbf{(B)} \quad \frac{13}{2}\sin 2x$$

$$\frac{-13}{2}\cos 2x$$

$$\mathbf{(D)} \quad \frac{-13}{2}\sin 2x$$

f. The product of the eigen values of
$$\begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{pmatrix}$$
 is equal to

$$(\mathbf{D})$$
 -6

g. Let T be a linear transformation from
$$R^3$$
 into R^2 defined by the relation Tx=Ax, A= $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$. The value of Tx when x is given by $\begin{bmatrix} 3 & 4 & 5 \end{bmatrix}^T$

$$\begin{array}{c}
 \begin{bmatrix} 62 \\ 26 \end{bmatrix} \\
 \begin{bmatrix} 65 \end{bmatrix}
\end{array}$$

$$(\mathbf{B})$$
 $\begin{bmatrix} 26 \\ 62 \end{bmatrix}$

$$(\mathbf{C}) \begin{bmatrix} 65 \\ 25 \end{bmatrix}$$

$$(\mathbf{D})$$
 $\begin{bmatrix} 25 \\ 65 \end{bmatrix}$

h. The value of
$$P(x) = 2P_2(x) + 4P_1(x) + 5P_0(x)$$
 as a polynomial in x is equal to

(A)
$$3x^2-4x-4$$

(B)
$$3x^2+4x-4$$

(C)
$$3x^2-4x+4$$

(B)
$$3x^2+4x-4$$
 (D) $3x^2+4x+4$

i. The value of the
$$J_3(x)$$
 is

(A)
$$\left(\frac{8}{x^2} - 1\right) J_1(x) - \frac{4}{x} J_0(x)$$

(C) $\left(\frac{8}{x^2} + 1\right) J_1(x) - \frac{4}{x} J_0(x)$

(B)
$$\left(\frac{8}{x^2} - 1\right) J_1(x) + \frac{4}{x} J_0(x)$$

(D) $\left(\frac{8}{x^2} + 1\right) J_1(x) + \frac{4}{x} J_0(x)$

(C)
$$\left(\frac{8}{x^2} + 1\right) J_1(x) - \frac{4}{x} J_0(x)$$

(D)
$$\left(\frac{8}{x^2} + 1\right) J_1(x) + \frac{4}{x} J_0(x)$$

(8)

Answer any FIVE Questions out of EIGHT Questions. Each Question carries 16 marks.

$$f(x,y) = \begin{cases} \frac{x^2 + y^2}{|x| + |y|}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 is continuous at $(0,0)$

- **Q.2** a. Show that the function but its partial derivatives f_x and f_y does not exist at (0, 0). **(8)**
 - b. If $u = a^3x^2 + b^3y^2 + c^3z^2$ where $x^{-1} + y^{-1} + z^{-1} = 1$, show that the stationary value of u is given by $x = (\sum a)/a$, $y = (\sum b)/b$, $z = (\sum c)/c$ (8)
- a. Expand $f(x, y) = \tan^{-1}(y/x)$, in powers of (x-1) and (y-1) upto third degree terms. **Q.3** Hence compute f(1.1, 0.9) approximately. **(8)**

b. Evaluate
$$D$$
 where D is the region bounded by $X = 0$, $Y = 0$, $X + Y = 1$, using the transformation $X + Y = U$, $Y = UV$.

- $3x(1-x^2)y^2\frac{dy}{dx} + (2x^2 1)y^3 = ax^3$ a. Solve the differential equation 0.4 (8)
 - b. Solve by the method of undetermined coefficients, $y'' y = e^{3x} \cos 2x e^{2x} \sin 3x$ **(8)**
- a. Find the general solution of the equation $y'' 3y' + 2y = xe^{3x} + \sin 2x$ **Q.5 (8)**

b. Reduce the matrix
$$A = \begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$
 to the diagonal form. (8)

Q.6 a. If the following system has non-trivial solution, prove that
$$a + b + c = 0$$
 or $a = b = c$; $a + by + cz = 0$, $bx + cy + az = 0$, $bx + cy + az = 0$. (8)

b. Prove that the matrix $A = \begin{bmatrix} (1+i)/2 & (-1+i)/2 \\ (1-i)/2 & (1+i)/2 \end{bmatrix}$ is unitary and find A⁻¹ (8)

- Q.7 a. Test for consistency the following system of equations, and if consistent, solve them: $x_1 + 2x_2 x_3 = 3$; $3x_1 x_2 + 2x_3 = 1$; $2x_1 2x_2 + 3x_3 = 2$; $x_1 x_2 + x_3 = -1$ (8)
 - b. If $u = \log(x^3 + y^3 + z^3 3xyz)$ show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x + y + z)^2}$. (8)
- **Q.8** a. Find the power series solution about the origin of the equation xy'' + y' + xy = 0. (11)
 - b. Prove that $J_n''(x) = \frac{1}{4} \left[J_{n-2}(x) 2J_n(x) + J_{n+2}(x) \right]$ (5)
- $\int_{-1}^{1} (1-x^2) P_m'(x) P_n'(x) dx = 0$ **Q.9** a. Show that -1 . (8)
 - b. Solve $\left\{ y \left(1 + \frac{1}{x} \right) + \cos y \right\} dx + (x + \log x x \sin y) dy = 0$