\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-III Regular / Remedial Examination December 2010

Subject code: 130604
Date: 14 /12 /2010

Subject Name: Structural Analysis - I
 Time: 10.30 am - 01.00 pm
 Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Differentiate between curved beam and arches. 03
(b) What are the different indeterminacies in the structure? Explain their uses in 04 the structural analysis giving the examples.
(c) What are the different types of the strain energies stored in the structure?

Why is it important for the analysis of the structure?
(d) What is the difference between mode of failures of long and short column? For a mild steel having modulus of elasticity as 200 GPa and yield stress of $250 \mathrm{~N} / \mathrm{mm}^{2}$, calculate the critical slenderness ratio that separates short and long column.
Q. 2 (a) For a structure as shown in the figure.1, draw bending moment, shear force and axial force diagrams.
(b) For a structure as shown in the figure.2, draw bending moment, shear force and torsion diagrams.

OR

(b) A curved beam has semicircular shape with radius of 3 m and is loaded by a point load of 10 kN at centre of arc. Calculate the maximum bending moment, shear force and torsion.
Q. 3 (a) For a beam as shown in the figure.3, calculate the deflection and slope at the free end by Macaulay's method of double integration. Assume $\mathrm{E}=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$ and $\mathrm{I}=5 \times 10^{6} \mathrm{~mm}^{4}$.
(b) For the truss as shown in the figure.4, calculate the vertical deflection at the central lower point. Assume that all the members are having equal E and A .

OR

Q. 3 (a) For a beam as shown in the figure.3, calculate the deflection under the point load by Moment Area method OR Conjugate Beam Method. Assume E= $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=5 \times 10^{6} \mathrm{~mm}^{4}$.
(b) Analyze the compound truss as shown in the figure. 5 and tabulate the forces in the members.
Q. 4 (a) A column has one end fixed and other end hinged with length of 6.0 m . It is made up of a tube having external diameter of 100 mm and wall thickness of 10 mm . If the yield strength of the material is $410 \mathrm{~N} / \mathrm{mm}^{2}$ and rankine's constant is $1 / 4800$, calculate Euler's critical load and rankine's critical load.
(b) A bar of diameter 25 mm and length of 3 m is attached with a collar at bottom. If a weight of 10 kN is falling on the collar from a 200 mm height, calculate the maximum instantaneous strain, stress and elongation of the bar. Assume $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
Q. 4 (a) Calculate the external diameter required for a tubular column loaded by an axial load of 200 kN . The effective length of the column is 5 m . The permissible strength of the material is $180 \mathrm{~N} / \mathrm{mm} 2$ and rankine's constant is $1 / 3600$. The thickness of the material is to be taken as 10% of the external diameter.
(b) A bar of diameter 20 mm and length of 2 m is attached with a collar at bottom. If the maximum stress developed is to be limited up to $100 \mathrm{~N} / \mathrm{mm} 2$, calculate the maximum value of weight that can be allowed to fall on the collar form 0.2 m height. Assume $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
Q. 5 (a) A simple support beam has span of 20 m and loaded by a train of wheels as shown in the figure.6. Calculate the maximum bending moment and shear force induced at 8 m from left support.
(b) For a three hinged parabolic arch having rise of 6 m , span of 40 m and loaded by a point load of 200 kN at 10 m from left support and an udl of $20 \mathrm{kN} / \mathrm{m}$ over right half, calculate the maximum bending moment in both the halves. Also calculate the bending moment, shear force and normal thrust at 15 m from left support.
(c) A thin cylinder is filled with fluid which exerts pressure $2 \mathrm{kN} / \mathrm{m}^{2}$ on the wall. If the diameter of cylinder is 1 m , length of 3 m and shell thickness of 15 mm . Calculate the change in the volume of the cylinder. Assume $\mathrm{E}=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$ and poisson's ratio as 0.22 .

OR

Q. 5 (a) A simple support truss as shown in the figure. 7 is loaded by a moving udl of $10 \mathrm{kN} / \mathrm{m}$ traveling from left to right. Calculate the maximum axial force induced in the top chord and bottom chord.
(b) A cable bridge as shown in the figure .8 is loaded by a udl of $10 \mathrm{kN} / \mathrm{m}$. the cable has sag of 1.5 m at the centre. Calculate the maximum axial force in the cable. Also calculate the forces acting on the pillars.
(c) A thin sphere of 1.5 m diameter is filled with fluid which exerts internal pressure of $3 \mathrm{kN} / \mathrm{m} 2$. Calculate the thickness required for the sphere if the change in the volume is not to exceed 2% of the original volume.

Figure 1

Figure. 2

Figure. 4

Figure. 5

10 kN 20 kN 30 kN 20 kN 30 kN 20 kN

$5 \times 1=5 \mathrm{~m}$

$$
8 \times 3=24 \mathrm{~m}
$$

figure. 7

Figure. 8

