Continous Time signals & systems

Nov. 1 Pr. 127 Con. 4677-06.

(REVISED COURSE)

YM-6694

(3 Hours)

[Total Marks: 100

State whether system is stable

- N.B. (1) Question No. 1 is compulsory and answer any four questions out of remaining.
 - (2) Assume suitable data, if necessary with proper justifications.
- 1. Attempt any four of the following :-

21

(a) Find whether signal is Periodic or Aperiodic. Given x(t) = x₁ (t) + x₂ (t) ,where x₁ (t) and x₂ (t) are two Sinusoid with frequencies f₁ and f₂ given below-

(i)
$$f_1 = \frac{\sqrt{3}}{2} Hz$$
, $f_2 = \frac{1}{\sqrt{12}} Hz$

- (ii) $f_2 = \sqrt{5}$ KHz, $f_1 = 3$ Khz
- (b) Find whether following signal is Energy or power. Find corresponding Energy or power. x(t) = u(t) + u(t-1) + 2u(t-3) u(t-5) 3u(t-7).
- (c) Find even and odd components of the signal-
 - (i) $x(t) = \sin t + \cos t + \sin t \cdot \cos t$
 - (ii) $x(t) = 1 + t + 2t^2$.
- (d) Evaluate following-

$$\int_{-3}^{6} (6-t^2) [\delta(t+4) + 2\delta(2t+4)] dt.$$

(e) Find Initial and Final Value for X(s)

$$X(s) = \frac{(2s+3)}{s^2 + 5s + 1}$$
.

- 2. (a) Classify system as Linear/Nonlinear, causal/Non causal, Time variant/Time invariant, memory/Memoryless
 - (i) $y(t) = \sin t \cdot x(t)$
 - (ii) $y(t) = \sin [x(t)].$
 - (b) Convolve following signals in time domain

(do not use Transform)

$$x_1(t) = u[t + 0.5] - u[t - 0.5] = x_2(t).$$

(c) If $x(t) \stackrel{FT}{\longleftrightarrow} x(w)$ then prove that-

$$F_1 [x_1(t) \cdot x_2(t)] = \frac{1}{2\pi} [x_1(w) * x_2(w)]$$

 (a) Obtain Trignometric Fourier Series Expansion for the signal shown below. Also find corresponding coefficients of exponential F.S.

(b) S.T. set of functions e j^{kw_0} t are orthogonal over the interval [O, T] where T = $2\pi/w_0$, hence find corresponding orthonormal set.

8

8

- (b) Find Fourier Transform of unit step function using signum function. Using this result and property of Fourier Transform, Find Fourier Transform of—

 **(t) = sin (w t) u(t) | State property used
- $x(t) = \sin (w_0 t) \cdot u(t). \text{ State property used.}$ $(c) \text{ If } x(t) \xleftarrow{FT} X(w) \text{ Then prove that } -$
- $F[-jt x(t)] = \frac{dx(w)}{dw}.$ F[-jt x(t)] = $\frac{dx(w)}{dw}$.
- Find impulse response of the system.

 system is described by following differential equation.

- If cos 2t $u(t) \longleftrightarrow X(s)$ determine time domain signal corresponds to following signals using property of Laplace Transform. Clearly state the properties used.
 - (iii) X(s + 1) (iv) $S^{-1} X (s)$ (ii) X(2s) (i) SX(s) - 1Find impulse response of the overall system.

State whether system is stable.

Find the F.T. of Gate Function-(c)

(ii) Using above result and property of Fourier Transform. Find F.T. of $x_1(t)$ and $x_2(t)$. State property used.

66 (a) · Obtain Trignometric Fourier

(a) Find Laplace Transform of following Periodic signal.

(b) Find o/p of the system if it is described by following differential equation.

d o/p of the system if it is described by following differential equations
$$\frac{d^2}{dt^2}$$
 $y(t) + 4\frac{d}{dt} y(t) + 3y(t) = \frac{d}{dt} x(t) + x(t)$

with initial conditions $y(o^-) = 1$, $\frac{d}{dt}y(o^-) = -1$ with i/p $x(t) e^{-2t} u(t)$.

State Sampling Theorem. (c) if $x(t) = 3 \cos (150 \pi t) + 2 \cos (250 \pi t)$. What is the Nyquist rate for this signal?

Find Fourier Transform of unit step functi (a) If $\begin{bmatrix} x_1 & (t) \\ x_2 & (t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -4 & -2 \end{bmatrix} \begin{bmatrix} x_1 & (t) \\ x_2 & (t) \end{bmatrix} + \begin{bmatrix} 0 \\ 6 \end{bmatrix} u(t)$ 12 and $y(t) = x_1(t)$,

- (i) Determine Transfer Function.
 - (ii) Find impulse response of the system.
- The system is described by following differential equation. y'''(t) + 2 y''(t) + 3 y'(t) + 4y(t) = u(t).Construct a state variable model.

8

10