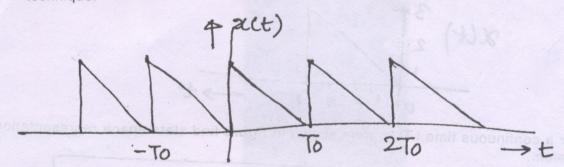
CON. 3/0/-U/.

(REVISED COURSE)

(3 Hours) [Total Marks : 100

- N.B. (1) Question No. 1 is compulsory.
 - (2) Attempt any four questions from remaining questions.
 - (3) Assume suitable data if necessary with proper justifications.
- (a) Show that the product of two even signals or two odd signals is an even signal and that product of an even and odd signal is odd signal.
 - (b) $x_1(t)$ and $x_2(t)$ are periodic signals with fundamental periods T_1 and T_2 respectively. Under what conditions the sum $x(t) = x_1(t) + x_2(t)$ is periodic, and what is fundamental period if x(t) is periodic?
 - (c) Determine whether the following signals are energy signals, power signals or neither:—
 - (i) $x(t) = e^{-at} u(t), a > 0$
 - (ii) x(t) = t u(t)
 - (d) Prove that $\delta(at) = \frac{1}{|a|} \delta(t)$


(a) Show that following signals are orthogonal over an interval [0, 1]

5

5

$$f(t) = x(t)$$
 $x(t) = \sqrt{3}(1-2t)$

- (b) Explain Gibb's phenomenon.
- (c) For the waveform x(t) shown in figure, find traingular Fourier Series using differentiation technique.

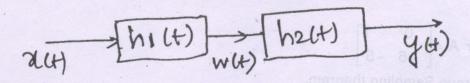
(a) A continuous time system whose input x(t) and output y(t) ar related by :-

$$\frac{dy(t)}{dt} + ay(t) = x(t)$$

where a is constant.

Show that system is not linear if

 $y(0) = y_0 \neq 0.$


Show that system is linear if y(0) = 0.

4

- (b) Evaluate
- $\int\limits_{0}^{\infty} \left(6-t^{2} \right) \left[\ \delta(t+4)+2\delta(2t+4) \right] dt$

- (c) System shown below is formed by connecting two systems is cascade with $h_1(t) = e^{-2t} u(t)$ $h_2(t) = 2e^{-t} u(t)$
- 8

Find impulse response h(t) of overall system

Con. 5767-CD-6012-07.

- (a) Find Fourier transform of a gate function.
 - (b) Using results in (a) and not otherwise find Fourier transform of :

6 8

- (i) $x_1(t) = \delta(t)$ (ii) $x_2(t) = A$
- State and prove Parseval's theorem.

8

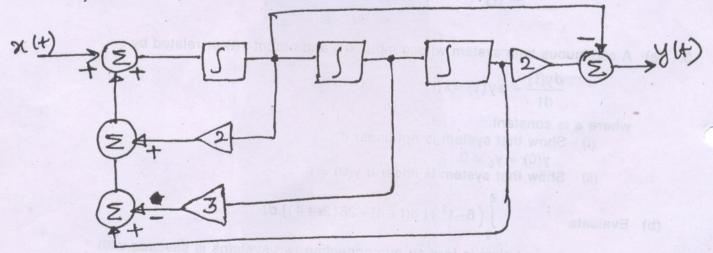
(a) Find inverse Laplace transform of:

$$X(s) = \frac{2 + 2se^{-2s} + 4e^{-4s}}{s^2 + 4s + 3} \quad \text{Re}(s) > -1$$

- (b) The output y(t) of a continuous LTI system is found to be $2e^{-3t}$ u(t) when input x(t) is u(t).
 - Find impulse response h(t) of system. (i)
 - 6
 - Find output y(t) when input x(t) is e^{-t} u(t).
- 6

12

8


6. (a) Find the response of system

$$\frac{d^2 y(t)}{dt^2} + \frac{5dy}{dt} + 6y(t) = x(t)$$

subject to initial conditions y(0) = 2, y'(0) = 1 and input $x(t) = e^{-t} u(t)$.

- (b) For signal x(t) shown sketch and label
 - (i) x(t-2)
- (ii) x(2t)
- (iii) x(t/2)

- 7. (a) For a continuous time LTI system shown in figure find state space representation of system.

(b) Find e^{At} for $A = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}$.

5

5

(c) State and prove Sampling theorem.