Diplete - Et/CS (NEW SCHEME) - Code: DE51 / DC51

Subject: ENGINEERING MATHEMATICS - I

Time: 3 Hours

JUNE 2009

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following: **Q.1**

 (2×10)

a.
$$x \to 2$$
 $\frac{x^2 - 5x + 6}{x^2 - 4}$ is:

(A)
$$\frac{1}{4}$$

(B)
$$\frac{-3}{4}$$

(C)
$$\frac{1}{3}$$

(D)
$$\frac{1}{3}$$

b. If
$$y = x^2 - \cos x - \frac{1}{x^2}$$
, then $\frac{dy}{dx}$ is:

(A)
$$x - \cos x + \frac{2}{x^3}$$

(B)
$$2x - \sin x + \frac{2}{x^3}$$

(C)
$$2y + \sin y = \frac{2}{x^3}$$

(D)
$$2x + \sin x + \frac{2}{x^3}$$

c.
$$\int \sin^{-1}(\cos x) dx$$
 is:

$$\mathbf{(A)} \; \frac{\Pi \mathbb{X}}{2} + \frac{\mathbb{X}^2}{2} + \mathbb{C}$$

(B)
$$x + \frac{x^2}{2} + C$$

(D) $\frac{\prod x}{2} + C$

$$\frac{\Pi x}{2} - \frac{x^2}{2} + C$$

(D)
$$\frac{11x}{2} + 0$$

$$\Delta = \begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{vmatrix}, \text{ then value of } \Delta \text{ is:}$$

(A) 0

(B) 1

(C) - 1

(D) 2

e. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -1 & 3 \\ -1 & 0 & 2 \end{bmatrix}$, then $2A - B$ is:

$$\begin{pmatrix} 0 & 5 & 3 \\ 1 & 5 & 6 \end{pmatrix}$$

(C)
$$\begin{bmatrix} 1 & -5 & 3 \\ 5 & -6 & 0 \end{bmatrix}$$

(D)
$$\begin{bmatrix} -1 & 5 & 3 \\ 5 & 6 & 0 \end{bmatrix}$$

f. The order and degree of differential equation
$$\frac{d^2 y}{dx^2} = 1 + \sqrt{\frac{dy}{dx}}$$
 is:

(A)
$$O=1$$
, $D=2$

(B)
$$O=2$$
, $D=2$

(C)
$$O=2$$
, $D=1$

g. The sixth term from the end in the expansion of
$$(2x^2 - \frac{1}{x})^{12}$$
 is:

(A)
$$26344 x^3$$

(B)
$$25344 \text{ x}^3$$

(C)
$$-25344 \text{ x}^3$$

(D)
$$-26344 \text{ x}^3$$

h. The value of
$$\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ}$$
 is:

(A)
$$\frac{1}{8}$$

(B)
$$\frac{-1}{8}$$

(C)
$$\frac{3}{8}$$

i. The area of a triangle whose vertices are
$$(3,5)$$
, $(5,3)$, $(7,7)$ is

j. The slope of a line which is perpendicular to the line
$$4x+9y-3=0$$
 is:

(A)
$$\frac{-9}{4}$$

(B)
$$\frac{4}{9}$$

$$\frac{-4}{2}$$

(D)
$$\frac{9}{4}$$

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

Q.2 a. If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
, prove that $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$

(8)

$$f(x) = 2x^3 - 21x^2 + 36x - 20$$

(8)

Q.3 a. Evaluate
$$\int x \cos^3 x \, dx$$

(8)

b.
$$\int_0^{\pi/2} \log \tan x \, dx$$

(8)

Q.4 a. if
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, find A^{-1} and show that $A^{-1} = A^2$ (8)

b. Using Cramer's method solve the following system of linear equations for x,y,z:

$$3x - y + z = 5$$

 $2x - 2y + 3z = 5$
 $x + y - z = -1$ (8)

Q.5 a. Solve
$$2x^2 \frac{dy}{dx} = y(x + y)$$
 (8)

b. Solve
$$\frac{dy}{dx} + y \cdot \sec x = \tan x$$
 (8)

- Q.6 a. Find the term independent of x in the expansion of $(2x^2 \frac{1}{x})^{12}$ (8)
 - b. The sum of three terms of a G.P is $\frac{13}{12}$ and their product is -1, find the G.P (8)

Q.7 a. Prove that
$$\frac{\sin \theta + \sin 2\theta + \sin 4\theta + \sin 5\theta}{\cos \theta + \cos 2\theta + \cos 4\theta + \cos 5\theta} = \tan 3\theta$$
 (8)

- b. The sides of a triangle are x^2+x+1 , 2x+1 and x^2-1 . Find the greatest angle. (8)
- Q.8 a. If p be the length of perpendicular from the origin to the line whose intercepts on the axes are a & b respectively, $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$ (8)
 - b. Find the equation of the straight line parallel to 2x+3y+11=0 and which is such that sum of its intercepts on the axes is 15.
- Q.9 a. Find the equation of the circle passing through the points (2,-6), (6,4) and (-3,1). (8)
 - b. Show that $9x^2+4y^2-54x-56y+241=0$ represents an ellipse. Find its centre, vertices, foci, eccentricity, directrices, latus-rectum and equations of major and minor axes. (8)