

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2009 ADVANCED COMPUTER ARCHITECTURE SEMESTER - 4

Time	e : 3 H	lours					Full Marks: 70
				GR	OUP - A		
			(M	fultiple Choi	ce Type (questions)	
		, -					
1.	Cho	ose th	e correct altern	atives for the	following	•	10 × 1 = 10
	1)	The	vector stride va	lue is require	đ	tana di kacamatan d Kacamatan di kacamatan di kacama	
		a)	to deal with th	he length of ve	ectors		
		b)	to find the par	ralielism in ve	ectors		
•		c)	to access the	elements in n	ulti-dime	nsional vectors	
		d)	to execute vec	ctor instructio	n.		
	ii)	The	performance of	a pipelined p	rocessor s	suffers if	
		a)	the pipeline s	tages have dii	ferent del	ays	
.*		b)	consecutive in	nstructions ar	e depende	ent on each other	
		c)	the pipeline s	tages share h	ardware r	esources	
		d)	all of these.				
	iii)						hit ratio of 80%. The
					time of 10	00 ns. What is the	e effective access time
		for C	CPU to access n	nemory?			
		a)	52 ns		b)	60 ns	-
		c)	70 ns		d)	80 ns.	<u> </u>

г	- 100s	i
ł		L
9	Utech	
٩	S	ĺ
Þ		į

ív)		at is a main advantag ed systems (RS)?	e of classical	vector systems	(VS) compare	ed to RISC
	a)	VS have significantly	higher memo	ory bandwidth th	an RS	
	b)	VS have higher clock	rate than RS	}		
	c)	VS are more parallel	than RS	•		
	d)	None of these.				
v)	Ass	ociative memory is a				
	a)	pointer addressable	memory			
	b)	very cheap memory				
	c)	content addressable	memory			
	d)	slow memory.				
vi)	The	principle of locality jus	stifies the use	of		
	a) .	interrupts	b)	polling	•	
	c)	DMA	d)	cache memor	гу.	
vii)	How	many address bits are	e required for	a 512 × 4 memor	y ?	
	a)	512	b)	4		
•	c)	9	d)	$A_0 - A_6$.		
viii)	The	division of stages of a p	pipeline into s	ub-stages is the	basis for	
	a)	pipelining				
-	b)	super-pipelining				
	c)	superscalar				
	d)	VLIW processor.				

ix)	Wha	at will be the speed up for a four stage linear pipeline when the number of
	inst	truction $n = 64$?
	a)	4·5
<i>;</i>	c)	6.5 d) None of these.
x)	Dyn	namic pipeline allows
	a)	multiple function to evaluate
	b)	only streamline connection
	c)	perform fixed function

GROUP - B

(Short Answer Type Questions)

Answer any three of the following questions.

 $3 \times 5 = 15$

2. Consider the pipelined execution of these instructions:

DADD

none of these.

d)

R1, R2, R3

DSUB

R4, R1, R5

AND

R6, R1, R7

OR

R8, R1, R9

XOR

R10, R1, R11

Explain how the above execution may generate a data hazard and describe a way to minimize the data hazard stalls using forwarding. Modify the above example to show a case where forwarding may not work.

3. Consider a computer where the clock per instruction (CPI) is 1.0 when all memory accesses hit (no memory stalls) in the cache. Assume each clock cycle is 2 ns. The only data accesses are loads and stores, and these total 50% of the instructions. Assume the following formula for calculating execution time:

CPU execution time = (CPU clock cycles + Memory stall cycles) × Clock cycle time.

For a program consisting of 100 instructions:

- Calculate the CPU execution time assuming there are no misses.
- Calculate the CPU execution time considering the miss penalty is 25 clock cycles and the miss rate is 2%.

Discuss the difference between write through and write back cache policies.

- Assume the performance of 1-word wide primary memory organization is
 - 4 clock cycles to send the address
 - 56 clock cycles for the access time per word
 - 4 clock cycles to send a word of data

Given a cache block of 4 words, and that a word is 8 bytes, calculate the miss penalty and the effective memory bandwidth.

Re-compute the miss penalty and the memory bandwidth assuming we have

- Main memory width of 2 words
- Main memory width of 4 words
- Interleaved main memory with 4 banks with each bank 1-word wide.
- 5. Explain the concept of strip mining used in vector processors. Why do vector processors use memory banks?
- 5. Discuss Flynn's classification of parallel computers.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

a) Design an arithmetic unit with variable S and 2 n-bit data inputs A and B. The circuit generates following arithmetic operations in conjuction with carry in C_{in} . Draw the logic diagram.

s	C _{in} = 0	C _{in} = 1
O nosth d	D = A + B	D = A - 1
o saledane	D = A - 1	D=A+B'+1

- b) What is floating point arithmetic operation? Explain all (addition, difference, multiplication, division) operations with example.
- c) What are logical address and physical address? If segment no. is 8, page no. is 04, word no. is 40. Segment no. 8 hold 30 and page no. 30 hold 019, what will be corresponding physical address? For answer figure is essential.
 5 + 5 + 5
- 8. a) What is I/O interface?
 - b) What are I/O vs. Memory Bus and Isolated vs. Memory-Mapped I/O?
 - c) What are the different mechanisms of Asynchronous Data Transfer ? Explain in brief.
 - d) Explain DMA working principle.

2 + 3 + 5 + 5

- 9. a) What are the different pipeline hazards and what are the remedies?
 - b) What is Vector array processor? Explain with example.
 - c) Describe Harvard architecture.

5+5+5

- 10. a) Apply Booth's algorithm to multiply the two numbers + 11 and 12.
 - b) What is the limitation of direct mapping method? Explain with example how it can be improved in set-associative mapping.
 - c) Use 8-bit 2's complement integer to perform -43 + (-13).
 - d) What is a tri-state buffer? Design a common bus system using tri-state buffers for two registers of 4-bits each.
 - e) What is serial adder? Discuss it briefly with diagram.
- 3 + 4 + 3 + 3 + 2
- 11. a) What are the different methods for control unit design? Explain.
 - b) Write down the different addressing modes with examples.
 - c) What do you mean by pipeline processing?
 - d) What are instruction pipeline and arithmetic pipeline?
 - e) Find 2's complement of $(1AB)_{16}$ represented in 16 bit format. 4+6+2+2+1

END