Register			
Number			

Part III - MATHEMATICS

(New Syllabus) (English Version)

Time Allowed: 3 Hours |

[Maximum Marks: 200

SECTION - A

N. B.: i) All questions are compulsory.

- ii) Each question carries one mark.
- iii) Choose the most suitable answer from the given four alternatives. $40 \times 1 = 40$
- 1. The particular integral of the differential equation $f(D)_y = e^{ax}$ where

$$f(D) = (D-a)g(D), g(a) \neq 0$$
, is

- a) rue ax
- b) $\frac{e^{ax}}{g(a)}$
- c) $g(a)e^{ax}$
- d) $\frac{xe^{ax}}{g(a)}$
- 2. The order and degree of the differential equation

$$\sin x (dx + dy) = \cos x (dx - dy)$$
 are

a) 1, 1

b) 0, 0

c) 1, 2

d) 2, 1.

		2		
3.	The	number of rows in the truth table of	~[$p \land (\sim q)$ is
	a)	2	ъ)	4
	c)	6	d)	8.
4.		a set of integers with operation $*$ de $3*(4*5)$ is	efined	by $a * b = a + b - ab$, the value
	a)	25	b)	15
	c)	10	d)	5.
5.	In tis a) b) c) d)	the multiplicative group of n^{th} roots of $\omega^{\frac{1}{k}}$ ω^{-1} ω^{n-k} $\omega^{\frac{n}{k}}$.	f unit	y, the inverse of ω^k , where $k < n$,
6.	The	curve $y = ax^3 + bx^2 + cx + d$ has a j	point	of inflexion at $x = 1$, then
	a)	a+b=0	b)	a+3b=0
	c)	3a+b=0	d)	3a+b=1.
7.	Lim × →	$\frac{x}{\tan x}$ is		
	a)	1	b)	-1

d) ∞.

c) 0

8. If
$$u = \log \left[\frac{x^2 + y^2}{xy} \right]$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is

a) 0

b) u

c) 2u

d) u^{-1}

9. An asymptote to the curve $y^2(a+2x) = x^2(3a-x)$ is

a) x = 3a

b) $x = -\frac{a}{2}$

c) $x = \frac{a}{2}$

d) x = 0.

10. The area of the region bounded by the graph of $y = \sin x$ and $y = \cos x$ between x = 0 and $x = \frac{\pi}{4}$ is

a) $\sqrt{2} + 1$

b) $\sqrt{2} - 1$

c) $2\sqrt{2}-2$

d) $2\sqrt{2} + 2$.

11. The value of $t + t^{22} + t^{23} + t^{24} + t^{25}$ is

a) i

b) -i

c) 1

d) - 1.

12. If p represents the variable complex number z and if |2z-1|=2|z|, then the locus of p is

a) the straight line $x = \frac{1}{4}$

b) the straight line $y = \frac{1}{4}$

c) the straight line $z = \frac{1}{2}$

d) the circle $x^2 + y^2 - 4x - 1 = 0$.

13. If ω is a cube root of unity, then the value of

$$(1 - \omega + \omega^2)^4 + (1 + \omega - \omega^2)^4$$
 is

- a) 0
- b) 32
- -16
- d) 32.

14. The arguments of n^{th} roots of a complex number differ by

- a) $\frac{2\pi}{n}$
- b) $\frac{\pi}{n}$
- c) $\frac{3\pi}{n}$
- d) $\frac{4\pi}{n}$.

15. If B and B' are the ends of the minor axis, F_1 and F_2 are the foci of the ellipse $\frac{x^2}{8} + \frac{y^2}{4} = 1$, then the area of $F_1 B F_2 B'$ is

- a) 16
- b) 8
- c) $16\sqrt{2}$
- d) $32\sqrt{2}$.

16. If A is a square matrix of order n, then | adj(A) | is

a) | A | ²

b) | A | n

c) $|A|^{n-1}$

d) | A |.

- 17. In a system of 3 linear non-homogeneous equations with three unknowns, if $\Delta = 0$ and $\Delta_x = 0$, $\Delta_y \neq 0$ and $\Delta_z = 0$, then the system has
 - a) unique solution
 - b) two solutions
 - c) infinitely many solutions
 - d) no solution.
- 18. If the equations -2x + y + z = l, x 2y + z = m and x + y 2z = n are such that l + m + n = 0, then the system has
 - a) a non-zero unique solution
 - b) trivial solution
 - c) infinitely many solutions
 - d) no solution.
- 19. If $\rho(A) = \rho(A, B)$ = the number of unknowns, then the system is
 - a) consistent and has infinitely many solutions
 - b) consistent and has unique solution
 - c) consistent
 - d) inconsistent.

20. If
$$\overrightarrow{u} = \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} \times \overrightarrow{b})$$
, then

- a) \overrightarrow{u} is a unit vector
- b) $\overrightarrow{u} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$
- c) $\overrightarrow{u} = \overrightarrow{0}$
- d) $\overrightarrow{u} \neq \overrightarrow{0}$.

21. '+' is not a binary operation on

- a) N
- b) 2
- c) (
- d) $Q \{0\}$.

22. Var(4x+3) is

a) 7

b) 16 Var(X)

c) 19

d) 0.

23. For a binomial distribution with mean 2 and variance $\frac{4}{3}$, p is equal to

- a) $\frac{2}{3}$
- b) $\frac{1}{3}$
- c) $\frac{3}{4}$
- d) $\frac{2}{\sqrt{3}}$

24. The random variable X follows a normal distribution whose probability function is given by $f(x) = ce^{-\frac{1}{2}(x-100)^2}$. The value of c is

- a) $\sqrt{2\pi}$
- b) $\frac{1}{\sqrt{2\pi}}$
- c) $5\sqrt{2\pi}$
- d) $\frac{1}{5\sqrt{2\pi}}$

- 25. In a Poisson distribution if P[X=2] = P[X=3], then the value of its parameter λ is
 - a) 6

b) 2

c) 3

- d) 0.
- 26. The area between the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and its auxiliary circle is (a > b)
 - a) $\pi b (a b)$
 - b) $2\pi a (a b)$
 - c) $\pi a (a-b)$
 - d) $2\pi b (a b)$.
- 27. $\int_{0}^{\infty} x^{5} e^{-4x} dx$ is
 - a) $\frac{6}{4^6}$
 - b) $\frac{6}{4^{5}}$
 - c) $\frac{5}{4^6}$
 - d) $\frac{5}{4^5}$
- 28. The volume of the solids obtained by revolving the area of the ellipse

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about its major and minor axes are in the ratio (a > b)

a) $b^2 : a^2$

b) $a^2 : b^2$

c) a:b

d) b:a.

29. If $y = ke^{\lambda x}$ then its differential equation is

a)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lambda y$$

b)
$$\frac{dy}{dx} = ky$$

c)
$$\frac{dy}{dx} + ky = 0$$

d)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{\lambda x}$$
.

30. On putting y = vx the homogeneous differential equation

$$x^2 dy + y (x + y) dx = 0$$
 becomes

a)
$$xdv + (2v + v^2) dx = 0$$

b)
$$vdx + (2x + x^2) dv = 0$$

c)
$$v^2 dx - (x + x^2) dv = 0$$

d)
$$vdv + (2x + x^2) dx = 0$$
.

31. The eccentricity of the hyperbola whose latus rectum is equal to half of its conjugate axis, is

a)
$$\frac{\sqrt{3}}{2}$$

- b) $\frac{5}{3}$
- c) $\frac{3}{2}$

d)
$$\frac{\sqrt{5}}{2}$$

32. If P is any point on the hyperbola $\frac{x^2}{36} - \frac{y^2}{4} = 1$ and the ordinate at P meets the asymptotes at Q and Q' then $QP \cdot Q'P$ is

a) 36

b) 6

c) 4

^{*}) 2.

33. The equations of the major and minor axes of $\frac{x^2}{9} + \frac{y^2}{4} = 1$ respectively are

a)
$$x = 3, y = 2$$

b)
$$x = -3, y = -2$$

c)
$$x = 0, y = 0$$

d)
$$y = 0, x = 0.$$

34. The surface area of a sphere, when the volume is increasing at the same rate as its radius, is

b)
$$\frac{1}{2\pi}$$

d)
$$\frac{4\pi}{3}$$
.

35. The angle between the parabolas $y^2 = x$ and $x^2 = y$ at the origin is

a)
$$2 \tan^{-1} \left(\frac{3}{4} \right)$$

b)
$$\tan^{-1}\left(\frac{4}{3}\right)$$

c)
$$\frac{\pi}{2}$$

d)
$$\frac{\pi}{4}$$

36. If $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} - \overrightarrow{b}|$, then

a)
$$\overrightarrow{a}$$
 is parallel to \overrightarrow{b}

b)
$$\overrightarrow{a}$$
 is perpendicular to \overrightarrow{b}

c)
$$\begin{vmatrix} \overrightarrow{a} \end{vmatrix} = \begin{vmatrix} \overrightarrow{b} \end{vmatrix}$$

d) \overrightarrow{a} and \overrightarrow{b} are unit vectors.

- 37. The projection of \overrightarrow{OP} on a unit vector \overrightarrow{OQ} equals thrice the area of parallelogram \overrightarrow{OPRQ} . Then $\angle POQ$ is
 - a) $\tan^{-1}\left(\frac{1}{3}\right)$
 - b) $\cos^{-1}\left(\frac{3}{\sqrt{10}}\right)$
 - c) $\sin^{-1}\left(\frac{3}{\sqrt{10}}\right)$
 - d) $\sin^{-1}\left(\frac{1}{3}\right)$.
- 38. The two lines $\frac{x-1}{2} = \frac{y-1}{-1} = \frac{z}{1}$ and $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z-1}{2}$
 - a) parallel
 - b) intersecting
 - c) skew
 - d) perpendicular.
- 39. The projection of $\overrightarrow{l} \overrightarrow{J}$ on Z-axis is
 - a) 0

b) 1

c - 1

- d) ∞.
- 40. The unit normal vectors to the plane 2x y + 2z = 5 are
 - a) $2\vec{i} \vec{j} + 2\vec{k}$
 - b) $\frac{1}{3} \left(2\overrightarrow{l} \overrightarrow{J} + 2\overrightarrow{k} \right)$
 - c) $-\frac{1}{3}\left(2\overrightarrow{l}-\overrightarrow{j}+2\overrightarrow{k}\right)$
 - d) $\pm \frac{1}{3} \left(2\overrightarrow{i} \overrightarrow{j} + 2\overrightarrow{k} \right)$.

SECTION - B

N. B.: i) Answer any ten questions.

- ii) Question No. **55** is compulsory and choose any nine questions from the remaining.
- iii) Each question carries six marks.

 $10 \times 6 = 60$

41. If
$$A = \begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$, then verify that $(AB)^{-1} = B^{-1}A^{-1}$.

42. Solve the following system of linear equation by determinant method:

$$2x + 3y = 8$$
, $4x + 6y = 16$.

- 43. Show that the points (3, -1, -1), (1, 0, -1) and (5, -2, -1) are collinear.
- 44. Find the vector and Cartesian equations of a sphere with centre having position vector $2\vec{i} \vec{j} + 3\vec{k}$ and radius 4 units.
- 45. Solve $x^4 + 4 = 0$, if 1 + i is one of the roots.
- 46. Prove that the tangent at any point to the rectangular hyperbola forms with the asymptotes a triangle of constant area.
- 47. Find the absolute maximum and minimum values of the function

$$f(x) = x^3 - 3x^2 + 1, -\frac{1}{2} \le x \le 4.$$

- 48. Verify Lagrange's law of mean for the function $f(x) = x^3 5x^2 3x$ on [1, 3]
- 49. Find an approximate value for $\sqrt[3]{65}$ by using differentials.
- 50. Find the area of the region bounded by y = 2x + 4, y = 1, y = 3 and y-axis.
- 51. Solve $x^2 \frac{dy}{dx} = y^2 + 2xy$ given that y = 1 when x = 1.
- 52. a) Construct the truth table for $(p \lor q) \land (\sim q)$.
 - b) Show that $p \land (\sim p)$ is a contradiction.
- 53. Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.
- 54. a) The difference between the mean and the variance of a binomial distribution is 1 and the difference between their squares is 11. Find n.
 - b) Show that the total probability is 1 (for a Poisson distribution).
- 55. a) Marks in an aptitude test given to 800 students of a school was found to be normally distributed. 10% of the students scored below 40 marks and 10% of the students scored above 90 marks. Find the number of students scored between 40 and 90 marks.

OR

b) If $\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$, then prove that $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = 0 \text{ and } \sin 2\alpha + \sin 2\beta + \sin 2\gamma = 0.$

SECTION - C

- N. B.: i) Answer any ten questions.
 - ii) Question No. **70** is compulsory and choose any nine questions from the remaining.
 - iii) Each question carries ten marks.

 $10 \times 10 = 100$

56. Discuss the solutions of the system of equations for all values of λ (use rank method) :

$$x + y + z = 2$$
, $2x + y - 2z = 2$, $\lambda x + y + 4z = 2$.

- 57. Find the vector and Cartesian equations of the plane passing through the point (-1, -2, 1) and perpendicular to two planes x + 2y + 4z + 7 = 0 and 2x y + 3z + 3 = 0.
- 58. Solve the equation : $x^9 + x^5 x^4 1 = 0$.
- 59. Find the eccentricity, centre, foci, vertices of the ellipse

 $36x^2 + 4y^2 - 72x + 32y - 44 = 0$ and sketch the graph.

60. A cable of a suspension bridge is in the form of a parabola whose span is 40 m.

The roadway is 5 m below the lowest point of the cable. An extra support is provided across the cable 30 m above the ground level. Find the length of the support if the heights of the pillars are 55 m.

- 61. Show that the volume of the largest right circular cone that can be inscribed in a sphere of radius a is $\frac{8}{27}$ (volume of the sphere).
- 62. Find the intervals of concavity and the points of inflexion of the function $f(x) = x^4 6x^2.$
- 63. Verify Euler's theorem for $f(x, y) = \frac{1}{\sqrt{x^2 + y^2}}$.
- 64. Evaluate: $\int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cot x}}$.
- 65. Find the perimeter of the circle with radius a, by using integration.
- 66. The number of bacteria in a yeast culture grows at a rate which is proportional to the number present. If the bacteria triple in 1 hour, show that the number of bacteria at the end of five hours will be 3 5 times of the population at initial time.
- 67. Solve $\frac{d^2 y}{dx^2} 3 \frac{d y}{dx} + 2y = 2e^{3x}$ when $x = \log 2$, y = 0 and when x = 0, y = 0.
- 68. Show that the set G of all positive rationals forms a group under the composition *, defined by $a*b=\frac{ab}{3}$ for all $a,b\in G$.
- 69. The number of accidents in a year involving taxi drivers in a city follows a Poisson distribution with mean equals to 3. Out of 1000 taxi drivers, find approximately the number of drivers with (i) no accident in a year, (ii) more than 3 accidents in a year $[e^{-3} = 0.0498]$.

7Q a) Find the equation of the hyperbola if its asymptotes are parallel to x + 2y - 12 = 0 and x - 2y + 8 = 0 respectively, (2, 4) is the centre of the hyperbola and the hyperbola passes through (2, 0).

OR

b) Show that the lines $\frac{x-1}{1} = \frac{y+1}{-1} = \frac{z}{3}$ and $\frac{x-2}{1} = \frac{y-1}{2} = \frac{-z-1}{1}$ intersect and find the point of intersection.