F. E. (Semester - II) Examination - 2010

 ENGINEERING MECHANICS(June 2008 Pattern)
Time : 3 Hours] Instructions :
(1) Attempt Q. 1 or Q.2, Q. 3 or Q.4, Q. 5 or Q. 6 from section I and $Q .7$ or $Q .8, Q .9$ or $Q .10$ ard 11 or $Q .12$ from section II.
(2) Answers to the two sections spld be written in separate answer-books.
(3) Figures to the rights indicke full marks.
(4) Neat diagrams must be drgwn wherever necessary.
(5) Assume suitable dat if necessary.
(6) Use of cell phone pohibited in the examination hall.
(7) Use of electronta non-programmable pocket calculator is allowed.

SEGTION - I
Q.1) (A) Determine the esultant force in magnitude and direction for concurrent farce system as shown in Fig. 1(A).
(B) Locate the cerroid of the shaded area as shown in Fig. 1(B)

Fig. 1(A)

Fig. 1(B)
OR
P.T.O.
Q.2) (A) Two forces $F_{1}=500 \mathrm{~N}$ and $\mathrm{F}_{2}=300 \mathrm{~N}$ are acting at point A as shown in Fig. 2(A). If the resultant of two force has a magnitude of 750 N and acts vertically downward, determine the angle θ and ϕ.
(B) A 600 N force is applied at an angle $\theta=20^{\circ}$. Deterine the equivalent force couple system at point A and O. For value of θ the results at point A and O should be identrol. Refer Fig. 2(B).

Fig. 2(A)
Q.3) (A) Two identical prismatic bars h of weight $5 \mathrm{~N}, \mathrm{AB}$ and CD are welded together in form of T as shown in Fig. 3(A). Find angle θ that the C will make with vertical when vertical load $P=10 \mathrm{~N}$ is appind at B.
(B) The tower is heldin prace by three cables. If the force of each cable acting apthe tower is shown in Fig. 3(B), determine the resultant.

Fig. 3(B)

Fig. 3(A)

OR

Q.4) (A) Determine the support reactions for beam $A B$ loaded and supported as shown in Fig. 4(A).
(B) A uniform rod of weight W is bent into a circular ring of radius R and is supported by three wires as shown in Fig. 4(B). Determine the tension in each wire.

Fig. 4(A)
Q.5) (A) Determine the forces in eachember of the truss loaded and supported as shown in Fig. 5(A).
(B) A 120 kg block is supportad by a rope which is wrapped one and half times around hy rizontal rod. The coefficient of static friction between the roa mnd the rope is $\mu_{\mathrm{s}}=0.15$, determine the range of values of for which equilibrium is maintained. Refer

Fig. 5(A)

120 kg Block

Fig. 5(B)

OR

Q.6) (A) Knowing that $\mathrm{W}_{\mathrm{A}}=25 \mathrm{~N}$ and $\theta=30^{\circ}$, determine the range of values of W_{B} for which the system is in equilibrium. Refer Fig. 6(A). [08]
(B) Determine the horizontal and vertical components of force that pins A and C exert on the frame. Refer Fig. 6(B).

Fig. 6(A)

Fig. 6(B)

SECTION

Q.7) (A) The v-t diagram for the motion of the train as it moves from station A to station B is shownin $\mathbf{F g}$ /(A). Determine the average speed for the train and the ristgce between the stations. Also draw the a-t curve.
(B) Determine the constan F ce F which must be applied to the cord in order to cause 150 N block A to have a speed of $3.6 \mathrm{~m} / \mathrm{s}$ when it has deen displaced 1 m upward starting from rest. Neglect the werbl of the pulleys and cord. Refer Fig. 7(B).

Fig. 7(A)

Fig. 7(B)

OR

Q.8) (A) A car attained a speed of $24 \mathrm{~m} / \mathrm{s}$ after traveling 150 m along a straight road. Determine the constant acceleration and the time of travel when a car (a) starts from rest, (b) starts with initial velocity of $12 \mathrm{~m} / \mathrm{s}$.
(B) The 50 kg crate shown in Fig. 8(B), rest on horizonalal plane for which the coefficient of kinetic friction is $\mu_{\mathrm{k}}=$ 2. If the crate does not tip over when it is subjected to a 100 N force, determine the velocity of the crate in 5 s start riom rest.

Fig. 8(B)
Q.9) (A) A particle moves along the $2=\left\{\left(8 t^{2}\right) \mathrm{i}+\left(\mathrm{t}^{3}+5\right) \mathrm{j}\right\} \mathrm{m}$, where t is in seconds. Det myse the magnitudes of particle velocity and acceleration when $t=3$ s.
(B) Determine the maximum Constant speed at which the pilot can travel around the verical curve having a radius of curvature $\rho=800 \mathrm{~m}$, so that he experience a maximum acceleration $a_{n}=8 \mathrm{~g}=78.5 \mathrm{~m} / \mathrm{s}^{2} .{ }^{\mathrm{rl}}$ he has a mass of 70 kg , determine the normal force be can exerts on the seat of the airplane when the plane is travelinut this speed and is at its lowest point. Refer Fig. 9(B)./

Fig. 9(B)

OR

Q.10) (A) For a short distance the train travels along a track having a shape of spiral, $r=(1000 / \theta) \mathrm{m}$, where θ is in radians. If it maintains a constant speed $v=20 \mathrm{~m} / \mathrm{s}$, determine the radial and transverse components of its velocity when $\theta=(9 \pi / 4)$ radian.
(B) Determine the constant speed of the passengers on the ancement park ride if it is observed that the supporting at $\theta=30^{\circ}$ from the vertical. Each chair including its assengers has a mass of 80 kg . Refer Fig. 10(B).

Fig. ${ }^{(10(B)}$
Q.11)(A) Define Conservative an N n-conservative Forces with example.
(B) State the principle onservation of Energy and derive an expression for the same.
(C) The force cting on the 250 N crate has a magnitude of $\mathrm{F}=\left(12 \mathrm{t}^{2}\right) \mathrm{N}$, here t is in seconds. If the crate starts from rest, determine its speed when $t=5 \mathrm{~s}$. The coefficient of static and kine ic friction between the floor and crate are 0.3 and 0.2 respeatyely. Refer Fig. 11(C).

Fig. 11(C)

OR

Q.12)(A) The double spring bumper is used to stop the 7500 N steel billet in a rolling mill. Determine the stiffness $k=k_{1}=k_{2}$ of each spring so that no spring is compressed more than 0.06 m after it is struck by the billet travelling with a speed of $2.4 \mathrm{~m} / \mathrm{s}$. Neglect the mass of the springs, rollers and the plates A and B. Refer Fig. 12(A).

Fig. 12(A)
(B) Block A has a mass of 250 kg and is smding on a smooth surface with an initial velocity of $2 \mathrm{~m} / \mathrm{s}$ nakes a direct impact with block B, which has a mass $\$ 175 \mathrm{~kg}$ and is originally at rest. If both blocks are of the sanse and the impact is perfectly elastic ($e=1$), determife the velocity of each block just after impact. Show that the kipence energy of the blocks before and after impact is the sare.

