

Code: AE08 Time: 3 Hours Subject: CIRCUIT THEORY & DESIGN Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Q.1 Choose the correct or the best alternative in the following: (2 × 10)

a. The current through 2 Ω register in the Fig.1 is:

- b. Time constant of a capacitance circuit may be defined as the time during which voltage
 - (A) rises to 63.2% of its final steady value
 - (B) rises to 38.6% of its final steady value
 - (C) falls to 38.6% of its final steady
 - value
 - (D) 50% of its final steady state value.

c. A capacitor used in 240 volt AC line should have a peak voltage rating of

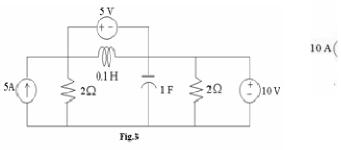
(A) 24	0 volts	(B) 340 volts
(C) 12	20 volts	(D) 720 volts

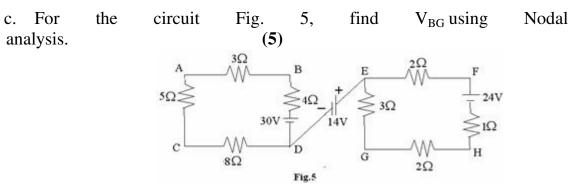
d. If four resistors each of 4 k Ω are connected in parallel, the net resistance is

(A) $1 k \Omega$	(B) 16 k Ω
(C) $2 k \Omega$	(D) 8 k Ω

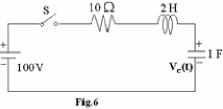
e. In the circuit $V_s = 10 \cos \Phi t$, power drawn by the 2 ohm resistor in 4 watt. The power factor is

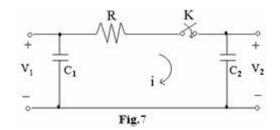
(A) 0.3	(B) 0.4
(C) 0.6	(D) 0.8


- f. Kirchoff's voltage law cannot be used
 - (A) with parallel circuit
 - (B) to find current in a circuit
 - (C) to find voltage across a resistor in a series
 - circuit
 - **(D)** for non-linear circuits
- g. In RLC circuit, the current at resonance is
 - (A) maximum in parallel resonance and minimum in series resonance.(B) maximum in series resonance and minimum in parallel resonance.
 - (C) maximum in both series and parallel resonance.
 - (D) minimum in both series and parallel resonance.
- h. The current in the 12 Ω resistor in the following circuit (Fig.2) is given by

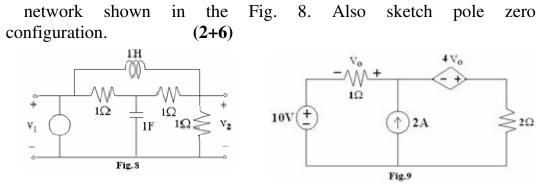

(A) 10 amp from left to right	(B) 10 amp from right to left			
(C) 5 amp from left to right (\mathbf{C})	(D) 5 amp from right to left			
 i. If the load connected to the source is inductive, for a maximum transfer of power from source to load, the source impedance should be 				
(A) Inductive	(B) capacitive			
(C) Resistive	(D) combination of L and C			
j. Kirchoff's current law is valid for				
(A) DC circuits only	(B) AC circuits only			
(C) Both DC and AC circuits	(D) Sinusoidal sources only			

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

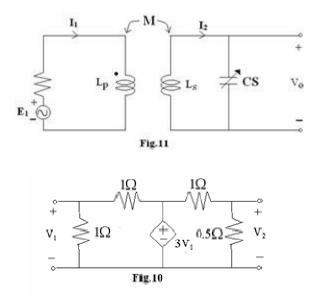

Q.2 a. Explain Duality and find dual of the given network (Fig.3). (3+3)


b. Determine I_x and I_y in the Fig. 4, using Kirchoff's law. (5)

Q.3 a. What do you mean by Initial conditions? (4+4) Switch 'S' in the circuit shown in Fig. 6 below is closed at t=0. Determine the initial



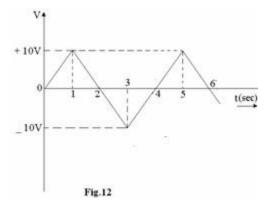
value of i, di/dt and d^2i/dt^2



b. In the network shown in Fig.7, initial voltage on C_1 is V_1 and on C_2 is V_2 , such that $V_1(0)=V_1$ and $V_2(0)=V_2$. The switch 'K' is closed at t=0. Obtain i(t) and $V_2(t)$ for all time. Given Data: R = 1 ohm, $C_1 = 1 \text{ F}$, $C_2 = 0.5 \text{ F}$, $V_1 = 2V$ and $V_2 = 1V$. (8)

Q.4 a. Define poles and zeros of a network function. Find the transfer function of the

- b State Thevenin's theorem. Find the power loss in the 2Ω resistor shown in Fig. 9 using Thevenin's theorem. (2+6)
- Q.5 a. Find Z parameters of the network shown in the Fig.10. (8)

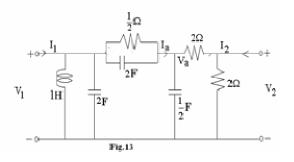


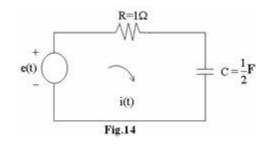
- b. Derive the expressions for O/P voltage, O/P current and amplification factor of single tuned circuit shown in Fig. 11 at resonance. (8)
- Q.6 a. Show that an average power consumed by inductor circuit is Zero. (4)
 - b. Find the resultant of three currents $(i_1, i_2 \text{ and } i_3)$ and express it in the form of

(6)

 $i = I_m \sin(wt + \Phi)$, where $i_1 = 20 \sin(314t + \pi/3)$ $i_2 = -10 \sin(314t)$ $i_3 = 15 \sin(314t - \pi/4)$

c. Determine the form factor of the given waveform (Fig.12). (6)

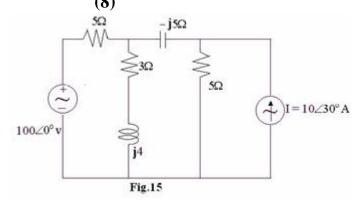



- Q.7 a. Diagnose whether the following impedance function represents a RL or RC network and find its first Cauer Form Z(s)= [(s+4)(s+6) / (s+3)(s+5)] (8)
 - b. Test whether the polynomial $s^{5}+s^{3}+s$ is Hurwitz or not. (4)

c. Check the positive realness of the function $Y(s) = (s^2 + 2s + 20)/(s + 10)$ (4)

(iii) Calculate the voltages across the capacitor and the coil. (8)

- Q.8 a. Design a constant K-low pass filter having $f_c=2$ kHz and design impedance $R_0=600$ Ω . Obtain the value of attenuation at 4 kHz. (8)
 - b. Find the short-circuit admittance function ^y11 and ^y21 for the network in the Fig.13. (8)



Q.9 a. Find the current i(t) for the network shown in Fig.14, when the voltage source is

$$e(t) = 2e^{-0.5t}u(t) \text{ and } v_c = (0-) = 0$$
 (8)

b. Find the current through the capacitor of (^{-j} 5) Ω reactance shown in Fig.15 below, using superposition theorem.

