DECEMBER 2007

Code: AE08

Subject: CIRCUIT THEORY & DESIGN

Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following: (2x10)

- a. Power in 5Ω resistor is 20W. The resistance R is
 - (A) 10Ω .
 - (B) 20Ω .
 - (C) 16Ω .
 - (D) 8Ω .

The Thevenin's equivalent circuit to the left of AB in Fig.2 has ^R eq given by

$$(\mathbf{A})^{-\frac{1}{3}}\Omega$$

(B)
$$\frac{1}{2}\Omega$$

$$\mathbf{(D)} \quad \frac{3}{2}\mathbf{C}$$

c. The energy stored in a capacitor is

$$(\mathbf{B}) \frac{1}{2} \operatorname{ci}^2$$

(B)
$$\frac{1}{2}\frac{1}{c}i^2$$

$$(\mathbf{C}) \frac{1}{2} \frac{\mathbf{v}^2}{c}$$

$$\mathbf{(D)} \quad \frac{1}{2} \mathbf{cv}^2$$

d. The Fig.3 shown are equivalent of each other then

$$i_{g} = -\frac{v_{g}}{R_{g}}$$

$$i_g = \frac{v_g}{R_g}$$

(C)
$$i_g = v_g R_g$$

$$i_g = \frac{R_g}{v_g}$$

e. For the circuit shown in Fig.4, the voltage across the last resistor is V. All resistors are of 1Ω .

The V_{S} is given by

(**A**) 13V.

(B) 8V.

(C) 4V.

(D) 1V.

- f. In the circuit shown in Fig.5, the switch s is closed at t = 0 then the steady state value of the current is
 - (**A**) 1 Amp.

(B) 2 Amp.

(C) 3 Amp.

(D) $\frac{1}{3}$ Amp.

g. The z parameters of the network shown in Fig.6 is

- h. For the pure reactive network the following condition to be satisfied
 - (A) $M_1(J\omega)M_2(J\omega) + N_2(J\omega)N_1(J\omega) = 0$
 - (B) $M_1(J\omega)N_1(J\omega) N_2(J\omega)M_2(J\omega) = 0$
 - (C) $M_1(J_{\Phi})M_2(J_{\Phi}) N_1(J_{\Phi})N_2(J_{\Phi}) = 0$
 - (D) $M_1(J\omega)N_2(J\omega) N_1(J\omega)M_2(J\omega) = 0$

Where $^{M_1(J_{\varpi})}$ & $^{M_2(J_{\varpi})}$ even part of the numerator and denominator and N_1 N_2 are odd parts of the numerator & denominator of the network function.

i. The network has a network function

$$Z(s) = \frac{s(s+2)}{(s+3)(s+4)}$$
. It is

- (A) not a positive real function.
- (B) RL network.

(C) RC network.

- (**D**) LC network.
- j. The Q factor for an inductor L in series with a resistance R is given by
 - $(\mathbf{A}) \quad \frac{\omega L}{R}$

 $(B) \frac{R}{\omega L}$

(C) olr

(D) $\frac{1}{\omega LR}$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. For the circuit shown in Fig.7. Determine the current i_1,i_2 and i_3 .

b. In the network of the Fig.8, the switch K is open and network reaches a steady state. At t=0, switch K is closed. Find the current in the inductor for t>0. (8)

Q.3 a. The network shown in the accompanying Fig.9 is in the steady state with the switch K closed. At t = 0 the switch is opened. Determine the

voltage across the switch v_k and $\frac{dv_k}{dt}$ at $t = 0_+$. (6)

- b. Define Thevenin's theorem. (4)
- c. It is required to find the current $i_1(t)$ in the resistor R_3 , by using Thevenin's theorem: The network shown in Fig.10 is in zero state until t = 0 when the switch is closed. (6)
- Q.4 a. For the given network in Fig.11, determine the value of ^RL that will cause the power in ^RL to have a maximum value. What will be the value of power under this condition.
 (8)

b. In the network shown in Fig.12 $v_1 = 10 \sin 10^6 t$ and $i_1 = 10 \cos 10^6 t$ and the network is operating in the steady state – For the element values as given, determine the node to datum voltage $v_a(t)$.

b. A network function consists of two poles at $P_{1,2} = r_i e^{\pm J(\pi - \theta)} = -\sigma_i \pm J\omega_i$ as given in the Fig.13. Show that the square of the amplitude response $M^2(\omega)$ is maximum at $\omega_m^2 = r_i^2 |\cos 2\theta|$. (8)

- **Q.6** a. Following short circuit currents and voltages are obtained experimentally for a two port network
 - (i) with output short $circuited I_1 = 5mA I_2 = -0.3mA V_1 = 25V$
 - (ii) with input short circuited $I_1 = -5mA$ $I_2 = 10mA$ $V_2 = 30V$

b. The network of the Fig.14 contains a current controlled current source. For the network find the z-parameters.

(8)

- Q.7 a. In the network of Fig.15, K is changed from position a to b at t=0. Solve for i, $\frac{di}{dt}$, and $\frac{d^2i}{dt^2}$ at t=0+if R = $\frac{1000\Omega}{dt}$, L=1H, C=0.1 $\frac{\mu F}{dt}$, and V = 100 V. (8)
 - b. Given $z(s) = \frac{s^2 + Xs}{s^2 + 5s + 4}$ what are the restrictions on 'X'. For z(s) to be a positive real function and find 'X' for $Re[z(J\omega)]$ to have second order zero at $\omega = 0$.
- Q.8 a. List out the properties of LC immittance function and then realize the network having the driving point impedance $z(s) = \frac{2s^5 + 12s^3 + 16s}{s^4 + 4s^2 + 3}$ by continued fraction method. (8)
 - b. For the network function and one Cauer form. $Y(s) = \frac{2(s+1)(s+3)}{(s+2)(s+4)}$ synthesize in one Foster (8)
- Q.9 a. The voltage ratio transfer function of a constant-resistance bridged-T network is given by $\frac{v_2}{v_1} = \frac{s^2 + 1}{s^2 + 2s + 1}$ synthesize the network that terminated in a 1Ω resistor. (8)
 - b. Find the poles of system functions for low-pass filter with n =3 and n =
 4 Butterworth characteristics. (Do not use the tables)
 (8)