MPPET 2012 ANSWERS

MATHEMATICS

- The area of the parallelogram, having diagonals $a = 3\hat{i} + \hat{j} - 2\hat{k}$ and $b = \hat{i} - 3\hat{j} + 4\hat{k}$, is:
- a) $10\sqrt{3}$ Ans. (A)
- b) $5\sqrt{3}$
- c) 300
- d) 8
- **2.** The unit vector perpendicular to $\hat{i} + \hat{j} + \hat{k}$ and $\hat{j} + \hat{k}$, is:

- b) $\hat{i} \hat{k}$ c) $\frac{2\hat{i} + \hat{j} + 2\hat{k}}{3}$ d) $\frac{1}{\sqrt{2}}(\hat{i} \hat{k})$

Ans. (D)

- **3.** If |a| = 3, |b| = 4, |c| = 5 and a + b + c = 0, then
- $\underline{b}.\underline{c}+\underline{c}.\underline{a}+\underline{a}.\underline{b}$ is equal to :
- a) -25Ans. (A)
- b) 50 c) $5\sqrt{2}$ d) 50

4. The work done by the force $\hat{i} - \hat{j} + \hat{k}$ is displacing the point $\hat{i} + \hat{j}$ to the point $2\hat{i} + 3\hat{j} + 4\hat{k}$ is

- a) 9 units Ans. (D)
- b) 1 unit
- c) 6 unit
- d) 3 units
- **5.** If $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$ and C is a point on AB such that $\overrightarrow{AC} = 3\overrightarrow{AB}$, then \overrightarrow{OC} is equal to :
- a) 3a 2b
- b) 3b 2a
- c) 3a-b
- d) 3b-a

Ans. (B)

- **6.** If $2f(x+1) + f\left(\frac{1}{x+1}\right) = 2x$, then f(2) is equal to :
- a) $\frac{5}{2}$ b) $\frac{5}{2}$ c) -1 d) 2

Ans. (A)

- 7. If $f(x) = \log_e \left(\frac{1+x}{1-x} \right)$ and $g(x) = \frac{3x+x^3}{1+3x^2}$, then (fog)
- (x) is equal to:
- a) 3f(x)
- b) $(f(x))^3$ c) 2f(x)
- d) 3g(x)

Ans. (A)

- **8.** The value of $\lim_{x\to 0} \frac{x\cos x \log_e(1+x)}{x^2}$ is:

- b) $\frac{1}{4}$ c) $\frac{1}{3}$ d) $\frac{1}{2}$

Ans. (D)

1

- 9. $\frac{d}{dx} \left| \tan^{-1} \sqrt{\frac{1+\sin\frac{x}{2}}{1-\sin\frac{x}{2}}} \right|$ is equal to :
- a) $-\frac{1}{2}$ b) $\frac{1}{2}$ c) $\frac{1}{4}$ d) $-\frac{1}{4}$

Ans. (C)

- **10.** If $\sin y = x \sin (a + y)$, then $\frac{dy}{dx}$ is equal to :
- a) $\frac{\sin(a+y)}{\sin a}$
- b) $\frac{\sin^2(a+y)}{\sin a}$
- c) $\frac{2\sin(a+y)}{\sin a}$ d) $\frac{\sin^2(a+y)}{\sin y}$

Ans. (B)

- **11.** Let $f(x + y) = f(x) f(y) \forall x, y \in R$. If f(5) = 7 and f'(0)=6, then f'(5) is equal to:
- a) 0
- b) 7
- c) 6
- d) 42

Ans. (D)

- **12.** The function $x \cot x$:
- a) always increases
- b) always decreases
- c) never decreases
- d) sometimes increases and sometimes decreases

Ans. (A)

- 13. In Lagrange's mean value theorem
- f(b) f(a) = (b a) f'(c) under suitable conditions. The value of c, when the function is $f(x) = x^2 - 3x - 1$ and the

interval is
$$\left[\frac{-11}{7}, \frac{13}{7}\right]$$
 is:

- a) $\frac{2}{7}$ b) $-\frac{2}{7}$ c) $\frac{1}{7}$ d) $-\frac{1}{7}$

Ans. (A)

- **14.** The function $f(x) = 2x^3 9x^2 + 12x + 30$ is increasing
- a) (1, 2)
- b) $(-\infty, 1) \cup (2, \infty)$
- c) $(-\infty, 2)$

Ans. (B)

15. If $x = a (t - \sin t)$, $y = a (1 - \cos t)$, then $\frac{dy}{dx}$ is equal

- a) cot t
- b) $\cot\left(\frac{1}{2}t\right)$ c) $\tan\left(\frac{1}{2}t\right)$ d) $\tan t$

Ans. (B)

- **16.** The function f(x) = |x 1| is :
- a) continuous everywhere
- b) continuous everywhere except at x = 1
- c) differentiable everywhere
- d) differentiable nowhere

Ans. (A)

17. If $f(x) = \frac{x}{x-1}$, then (fo fo...f) (x) is equal to :

- a) x
- b) $\frac{19x}{x-1}$ c) $\left(\frac{x}{x-1}\right)^{19}$ d) $\frac{x}{x-1}$

Ans. (D)

- **18.** A function f is defined by $f(x) = 2 + (x 1)^{2/3}$ in [0, 2]. Which of the following is not correct?
- a) f is continuous in [0, 2]
- b) f(0) = f(2)
- c) f is not derivable in [0, 2]
- d) Rolle's theorem is true in [0, 2]

- 19. $\frac{d}{dx}\left(\tan^{-1}\frac{\sqrt{1+x^2}-1}{x}\right)$ is equal to :
- a) $\frac{x^2}{2\sqrt{1+x^2}(\sqrt{1+x^2}-1)}$ b) $\frac{1}{1+x^2}$
- d) $\frac{2}{1+x^2}$

- 20. If displacement x of a moving particle in a plane at time t is given by $x = 2 \cos(t\sqrt{3}) + 3\sin(t\sqrt{3})$, then its acceleration is proportional to:
- a) $\frac{1}{r}$

- b) x c) x^{2} d) $\frac{1}{x^{2}}$

Ans. (B)

- **21.** $\int \sin^{-1} x \, dx$ is equal to :
- a) $\frac{1}{\sqrt{1-x^2}} + C$ b) $\cos^{-1} x + C$
- c) $x \sin^{-1} x + \sqrt{1 x^2} + C$ d) $x \sin^{-1} x \sqrt{1 x^2} + C$
- **22.** The value of $\int_{2}^{3} \frac{x+1}{x^{2}(x-1)} dx$ is:
- a) $\log_e \frac{16}{9} \frac{1}{6}$ b) $2\log_e 2 \frac{1}{6}$
- c) $\log_e \frac{4}{2} \frac{1}{6}$
- d) $\log_e \frac{16}{9} + \frac{1}{6}$

Ans. (A)

2

- 23. The area bounded by the curve $y = log_e x$, x axis and ordinates x = 1, x = 2 is:
- a) log_e 4
- b) $\log_e\left(\frac{2}{-}\right)$
- c) $\frac{1}{2} (\log_e 2)^2$ d) $\log_e (\frac{4}{2})$

Ans. (D)

- **24.** $\int_{2}^{3} \frac{e^{x} dx}{e^{x} + e^{5-x}}$ is equal to :
- b) 1/2
- c) 1
- d) $e^2 + e^3$

Ans. (B)

- **25.** $\int_0^{\pi/2} \frac{dx}{\sec x + \tan x}$ is equal to :
- a) 1
- b) 0
- c) $\log_e 2$ d) $\log_e \left(\frac{1}{2}\right)$

Ans. (C)

- **26.** $\int_{0}^{2\pi} |\sin x| \, dx$ is equal to :

- d) 0

a) 2 b) $\sqrt{3}$ c) 4 **Ans.** (A)

- **27.** The value of $\int_0^{2\pi} \frac{dx}{e^{\sin x} + 1}$ is:
- a) π
- b) 0
- d) $\pi/2$

Ans. (A)

- **28.** $\int e^x \frac{x^2 + 1}{(x+1)^2} dx$ is equal to :
- a) $-\frac{e^x}{x+1} + C$ b) $\frac{e^x}{x+1} + C$
- c) $\frac{xe^x}{x+1} + C$ d) $e^x \frac{x-1}{x+1} + C$

Ans. (D)

- **29.** The area bounded by the parabola $y^2 = 4$ ax and its latus rectum is:
- a) $\frac{8}{3}a^2$ b) $\frac{4}{3}a^2$ c) $4a^2$ d) $2a^2$

Ans. (A)

- **30.** If b > a, then $\int_a^b \frac{dx}{\sqrt{(x-a)(b-x)}}$ is equal to:

- a) $\frac{\pi}{2}$ b) π c) $\frac{\pi}{2}(b-a)$ d) $\frac{\pi}{4}(b-a)$

Ans. (B)

- 31. The solution of the differential equation $xdy - ydx = \sqrt{x^2 + y^2} dx$ is:
- a) $y \sqrt{x^2 + y^2} = cx$ b) $x + \sqrt{x^2 + y^2} = cx^2$
- c) $x \sqrt{x^2 + y^2} = cx$ d) $y + \sqrt{x^2 + y^2} = cx^2$

Ans. (D)

- 32. The solution of the differential equation $(x+a)\frac{dy}{dx} - 3y = (x+a)^5$, when y = 16 a⁵ at x = a, is:

- a) $y = (x + a)^5$ b) $2y = (x + a)^5$ c) $2y = (x + a)^3 (x + a)^5$ d) $y = (x + a)^3 (x + a)^5$

- 33. The solution of the differential equation (1 + x) y dx +(1 - y) x dy = 0 is:
- a) $\log_e(xy) + x y = c$ b) $\log_e(\frac{x}{y}) + x + y = c$
- c) $\log_e \left(\frac{x}{y}\right) x + y = c$ d) $\log_e (xy) x + y = c$

Ans. (A)

- 34. The differential equation of the circles touching the y-axis at origin is:
- a) $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$ b) $\frac{dy}{dx} = \frac{y^2 x^2}{xy}$
- c) $\frac{dy}{dx} = \frac{y^2 x^2}{2xy}$ d) $\frac{dy}{dx} = \frac{x^2 y^2}{2xy}$

Ans. (C)

- 35. The order of degree of the differential equation
- $\left(\frac{d^3y}{dx^3}\right)^{4/5} 2\frac{dy}{dx}\left(\frac{d^2y}{dx^2}\right)^2 = 0$ are respectively:
- a) 2, 10 Ans. (B)
- b) 3, 10 c) 3, 5

36. The solution of the differential equation $(2x-10y^3)\frac{dy}{dx} + y = 0$ is:

- a) $(2x-10y^3)y + \frac{1}{2}y^2 = c$ b) $xy^2 = 2y^5 + c$
- c) $xy^2 = -2y^5 + c$ d) $xy^2 = y^5 + c$

- **37.** $y = e^{2x} (x + c)$ is general solution of :
- a) $3y = \frac{dy}{dx} e^{2x}$ b) $2y = \frac{dy}{dx} e^{2x}$
- c) $3y = e^{2y} \frac{dy}{dx}$ d) $-3y = e^{3x} \frac{dy}{dx}$

Ans. (B)

38. If the integrating factor of the differential equation

 $x\frac{dy}{dx} + my = x^2e^x$ is x^{-2} , the value of m is:

- b) 1
- c) 2

Ans. (D)

- **39.** The curve, which passes through the origin and is such that the area included between the curve, the ordinate and x-axis is k times the cube of the ordinate, is:
- a) $ky^2 = 2x$
- c) $3ky^2 = 4x$
- b) $ky^2 = 4x$ d) $3ky^2 = 2x$

Ans. (C)

- **40.** The solution of the differential equation $\frac{dy}{dx} + \frac{1}{x} = \frac{1}{x^2} e^y$ is:

- a) $2xe^{-y} = cx^2 1$ b) $2xe^y = x^2 + c$ c) $2xe^{-y} = cx^2 + 1$ d) $xe^{-y} = cx^2 + 1$

Ans. (D)

- **41.** Let X be a finite set such that n(X) = n. The probability of selecting two subsets A, B of X, such that $B = X \sim A$, is:
- a) $\frac{1}{2}$ b) $\frac{1}{2^n 1}$ c) $\frac{1}{2^n}$ d) $\frac{1}{3^n}$

Ans. (B)

- **42.** If 0 < p(A) < 1, 0 < p(B) < 1 and $p(A \cup B) = p(A) + p(B) - p(A) p(B)$ then:
- a) p(B/A) = p(B) p(A)
- b) p(A' B') = p(A') p(B')
- c) $p((A \cup B)') = p(A') p(B')$
- d) p(A/B) = p(A)

Ans. (C)

- **43.** A and B throw a die alternatively till one of them gets a six and wins the game. If A starts the game first, the probability of A winning the game is:
- a) $\frac{3}{11}$ b) $\frac{5}{11}$ c) $\frac{6}{11}$ d) $\frac{7}{11}$

- **44.** Two dice are thrown together. The probability, that the sum of the numbers appearing on them is a prime number,

- a) $\frac{5}{12}$ b) $\frac{7}{18}$ c) $\frac{13}{36}$ d) $\frac{1}{3}$

- **45.** A die is thrown six times. The probability of getting at least a 5 at least five times is:
- a) $\frac{2}{279}$ b) $\frac{3}{729}$ c) $\frac{12}{729}$ d) $\frac{13}{729}$

Ans. (D)

- **46.** For finding the root of $x^2 5x + 2 = 0$ near 0 by Newton-Raphson method, the second iteration x₂ is equal to:
- a) 0.400000
- b) 0.438095
- c) 0.438000
- d) 0.430000

Ans. (B)

- 47. On dividing the interval into four equal parts the value of the integral $\int_{0}^{5} x^{2} dx$, by trapezoidal rule, is:
- b) 41.3

Ans. (A)

- **48.** On dividing the interval into four equal parts, the value of the integral $\int_0^1 \frac{dx}{1+x}$, by Simpson's rule, is:
- a) 2.08
- b) 0.7500 c) 0.6933
- d) 0.6900

Ans. (C)

- **49.** Newton-Raphson formula is :
- a) $x_n x_{n+1} = \frac{f'(x_n)}{f(x_n)}$ b) $x_{n+1} = \frac{f'(x_n)}{f(x_n)}$
- c) $x_{n+1} = \frac{f(x_n)}{f'(x_n)}$ d) $x_n x_{n+1} = \frac{f(x_n)}{f'(x_n)}$

Ans. (D)

- **50.** The two numbers x_1 , x_2 such that $4x_1 + 2x_2 \le 80$, $2x_1 + 2x_2 \le 80$ $5x_2 \le 180$, $x_1 \ge 0$, $x_2 \ge 0$ and for which $3x_1 + 4x_2$ is maximum, are respectively.
- a) 2, 36 Ans. (C)
- b) 20, 0
- c) 2.5,35
- d) 0, 36

51. If the second, third and sixth terms of an AP are in GP, then the common ratio of the GP is:

- a) 2
- b) 5
- c) 4
- d) 3

Ans. (D)

- **52.** If x = cy + bz, y = az + cx, z = bx + ay and $(x, y, z) \neq$ (0, 0, 0) then the value of $a^2 + b^2 + c^2 + 2abc$ is:
- a) -1
- b) 1
- c) 0

Ans. (B)

- **53.** Given $A = \begin{bmatrix} 3 & 5 \\ 4 & 2 \end{bmatrix}$, then $A^2 5A 11$ I is equal to :
- a) 3 I
- b) I

Ans. (A)

- **54.** $\sum_{r=1}^{\infty} \frac{1+a+a^2+...+a^{r-1}}{r!}$ is equal to :
- a) $\frac{e^a e}{a 1}$
- c) $\frac{e^a}{a-1}$

Ans. (A)

55. The value of the determinant

- a) $(a + b + c)^2$
- b) $a^2 + b^2 + c^2$
- c) $a^2 + b^2 + c^2 + 1$

Ans. (C)

- **56.** The number of odd numbers between 1000 and 10000 that can be formed by the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 when repetition of digits is not done, is:
- a) 1280
- b) 1836
 - c) 2572
- d) 1680

Ans. (D)

- **57.** The value of 1.2 + 2.3 + 3.4 + ... + 99.100 is : a) 330000 b) 333000 c) 333300 d) 333330

Ans. (C)

- The sum of *n* terms **58.** the series $\frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2 + 3^2} + \dots$ is:

- a) $\frac{n+1}{n}$ b) $\frac{n}{n+1}$ c) $\frac{6n}{n+1}$ d) $\frac{6(n-1)}{n}$

Ans. (C)

- **59.** If w is an emagineary cube root of unity, then (a+b-c)(a + bw - cw²) (a + bw² - cw) is equal to: a) $a^3 + b^3 - c^2 + 3abc$ b) $a^2 + b^2 - c^3$ c) $a^3 + b^3 - c^3 - 3abc$ d) $a^3 + b^3 - c^3 + abc$

Ans. (A)

- **60.** If $\left(\frac{3}{2} + \frac{\sqrt{3}}{2}i\right)^{50} = 3^{25}(x+iy)$, then (x, y) is equal to :
- a) $\left(\frac{1}{2}, \frac{-\sqrt{3}}{2}\right)$ b) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
- c) $\left(\frac{-1}{2}, \frac{\sqrt{3}}{2}\right)$ d) $\left(\frac{-1}{2}, \frac{-\sqrt{3}}{2}\right)$

Ans. (B)

- **61.** If α , β are the roots of the equation $x^2 x + 1 = 0$, the value of $\alpha^3 + \beta^3$ is:
- a) -2
- b) 2
- c) 4
- d) -4

Ans. (A)

- **62.** The system of equation -2x + y + z = a, x 2y + z = b, x + y - 2z = c is consistent, if:
- a) a + b c = 0
- b) a b + c = 0
- c) $a + b + c \neq 0$
- d) a + b + c = 0

Ans. (D)

- **63.** The sum of the series $\frac{1}{23} + \frac{1}{45} + \frac{1}{67} + \dots \infty$ is:
- a) log_e 2
- b) $\log_{e} 2 1$
- c) $1 \log_{e} 2$
- d) $1 + \log_{e} 2$

Ans. (C)

64. If α , β are the roots of the equation $2x^2 + 3x + 5 = 0$,

then the value of the determinant $\begin{vmatrix} \alpha & 0 & \alpha \end{vmatrix}$ is:

- a) $\frac{-3}{5}$ b) $\frac{-15}{4}$ c) $\frac{3}{5}$ d) $\frac{15}{4}$

Ans. (B)

- **65.** If the coefficients of x^r and x^{r-5} in the expansion of $(1 + x)^{51}$ are equal, the value of r is:
- a) 27
- b) 28
- c) 29
- d) 26

Ans. (B)

- **66.** If $\sin A + \sin B + \sin C = 3$, then $\cos A + \cos B + \cos C$ is equal to:
- a) 3
- b) 2
- c) 1
- d) 0

Ans. (D)

- **67.** If A + B = $\frac{\pi}{2}$, then (1 + tan A) (1 + tan B) is equal to :
- a) 2

- b) 1 c) 3 d) $\sqrt{3}$

Ans. (A)

- **68.** The principal value of $\sin^{-1} \frac{1}{\sqrt{17}} + \cos^{-1} \frac{5}{\sqrt{34}}$ is:

- c) $\sin^{-1} \frac{23}{17\sqrt{2}}$ d) $\cos^{-1} \frac{23}{17\sqrt{2}}$

Ans. (A)

- **69.** A hyperbola passes through (3, 3) and the length of its conjugate axis is 8. The length of latus rectum is:

Ans. (B)

- **70.** cosec $10^{\circ} \sqrt{3}$ sec 10° is equal to :
- a) 2
- b) $\sqrt{3}$ c) 4
- d) 0

Ans. (C)

- 71. The base BC of a triangle ABC is 6 cm and \angle B = 112.5°, \angle C = 22.5°, then its altitude is :
- a) 12 cm
- b) 6 cm
- c) 1.5 cm
- d) 3 cm

Ans. (D)

72. A tower subtends angles θ , θ , θ , θ at three points A, B, C respectively lying same side on a horizontal line through

the foot of the tower, then $\frac{AB}{BC}$ is equal to :

- a) $\frac{\sin 2\theta}{\sin \theta}$ b) $\frac{\sin 3\theta}{\sin 2\theta}$ c) $\frac{\sin 3\theta}{\sin \theta}$ d) $\frac{\sin 3\theta}{\sin \theta + \sin 2\theta}$

Ans. (C)

- 73. The general value of θ , for which $\frac{\tan 3\theta 1}{\tan 3\theta + 1} = \sqrt{3}$, is:
- a) $\frac{n\pi}{3} + \frac{\pi}{12}$
- b) $\frac{n\pi}{3} + \frac{7\pi}{36}$
- c) $n\pi + \frac{\pi}{12}$
- d) $n\pi + \frac{7\pi}{12}$

Ans. (B)

- **74.** If $x + \frac{1}{x} = 2\cos\theta$, then $x^3 + \frac{1}{x^3}$ is equal to;
- a) $\cos 3\theta$
- b) $\sin 3\theta$
- c) $2 \sin 3\theta$
- d) $2 \cos 3\theta$

Ans. (D)

- 75. In any triangle ABC, sin 2A + sin 2B + sin 2C is equal
- a) 4 cos A cos B cos C
- b) 2 sin A sin B sin C
- c) 2 cos A cos B cos C
- d) 4 sin A sin B sin C

Ans. (D)

- **76.** An equilateral triangle is inscribed in the parabola $y^2 = 4ax$ with is one vertex at the origin. The origin of its side is:
- a) $8a\sqrt{3}$
- b) 8a
- c) $4a\sqrt{3}$
- d) 4a

Ans. (A)

77. The value of m, for which the line y = mx + 2 is a tangent to the hyperbola $4x^2 - 9y^2 = 36$, are

a)
$$\pm \frac{4\sqrt{2}}{3}$$

- a) $\pm \frac{4\sqrt{2}}{3}$ b) $\pm \frac{2}{3}$ c) $\pm \frac{8}{9}$ d) $\pm \frac{2\sqrt{2}}{3}$

- 78. The distance between the two foci of the ellipse $5x^2 + 4y^2 = 20$ is :
- a) 1
- b) 2 c) $\frac{4}{\sqrt{5}}$ d) $2\sqrt{5}$

Ans. (B)

- **79.** If liens $(\tan^2\theta + \cos^2\theta) x^2 2 \tan \theta .xy + \sin^2\theta .y^2 = 0$ marks with x-axis angles α , β , then tan $\alpha \sim \tan \beta$ is equal to:
- a) 2
 - b) 4
- c) $\tan \theta$
- d) 2 tan θ

Ans. (A)

80. The value of λ , for which the three points $(1, 1), (4, -1), (-2, \lambda)$ are collinear, is :

a)
$$\frac{1}{2}$$

d)
$$-2$$

Ans. (C)

81. The limiting points of the coaxal system of circles $x^2 + y^2 + \lambda x + 1 = 0$ are :

a)
$$\left(\pm \frac{\lambda}{2}, 0\right)$$

c)
$$(\pm 1,0)$$

d)
$$(0,\pm 1)$$

Ans. (C)

82. The circles $x^2+y^2-6x-8y=0$ and $x^2+y^2-6x+8=0$

- a) intersecting in two points
- b) non intersecting
- c) touching externally
- d) touching internally

Ans. (D)

83. If a circles $x^2 + y^2 = a^2$ and the rectangular hyperbola xy = c^2 intersect in four points, $\left(ct_r, \frac{c}{t_r}\right), r = 1, 2, 3, 4$ then

 $t_1 t_2 t_3 t_4$ is equal to:

a)
$$-1$$

Ans. (B)

84. The point of intersection of lines represented by the equation $3x^2 + 8xy - 3y^2 + 29x - 3y + 18 = 0$ is:

a)
$$\left(\frac{3}{2}, \frac{5}{2}\right)$$

a)
$$\left(\frac{3}{2}, \frac{5}{2}\right)$$
 b) $\left(\frac{-3}{2}, \frac{-5}{2}\right)$ c) $\left(-3, -5\right)$ d) $\left(3, 5\right)$

Ans. (B)

85. Tangents are drawn from the point (6, 8) to the circle $x^2 + y^2 = 50$. The area of the triangle formed by the tangents and the chord of contact is:

- a) 50 units
- b) $25\sqrt{2}$ units
- c) 25 units
- d) 75 units

Ans. (C)

86. The angle between two lines, whose direction cosines, l, m, n are given by equations l + m - n = 0, and mn + m = 06nl-12 lm=0, is:

a)
$$\tan^{-1}\left(\frac{\sqrt{3}}{19}\right)$$

b)
$$\cos^{-1} \left(\frac{\sqrt{3}}{19} \right)$$

c)
$$\cot^{-1}\left(\frac{\sqrt{3}}{19}\right)$$
 d) $\sin^{-1}\left(\frac{\sqrt{3}}{19}\right)$

d)
$$\sin^{-1}\left(\frac{\sqrt{3}}{19}\right)$$

Ans. (A)

6

87. The plane through the point P = (1, 2, 2) and normal to OP cuts the coordinate axes at A, B, C respectively, where O is the origin. The centroid of the triangle ABC is:

a)
$$\left(\frac{3}{2}, 3, \frac{3}{2}\right)$$

b)
$$\left(3, \frac{3}{2}, \frac{3}{2}\right)$$

$$c)\left(\frac{3}{2},\frac{3}{2},3\right)$$

d)
$$\left(\frac{3}{2}, \frac{3}{2}, \frac{3}{2}\right)$$

Ans. (B)

88. A variable plane moves so that the sum of reciprocals of its intercepts on the coordinate axes is $\frac{1}{2}$. Then the plane passes through the point:

$$c)\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$$

Ans. (A)

89. The equations of the line of the intersection of planes 4x + 4y - 5z = 12 and 8x + 12y - 13z = 32 can be written

a)
$$\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z}{4}$$
 b) $\frac{x}{2} = \frac{y-1}{3} = \frac{z-2}{4}$ c) $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z}{4}$ d) $\frac{x}{2} = \frac{y}{3} = \frac{z-2}{4}$

b)
$$\frac{x}{2} = \frac{y-1}{3} = \frac{z-2}{4}$$

c)
$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z}{4}$$

d)
$$\frac{x}{2} = \frac{y}{3} = \frac{z-2}{4}$$

Ans. (C)

90. The equation of the plane through the line P = ax + by + cz + d = 0, P' = a'x + b'y + c'z + d' = 0 and parallel to x-axis is:

a)
$$Pa + P'a' = 0$$

b)
$$a'P = aP'$$

c)
$$Pa - P'a' = 0$$

d)
$$a'P + aP' = 0$$

Ans. (D)

91. The point of intersection of lines $\frac{x-5}{3} = \frac{y-7}{-1} = \frac{z+2}{1}$

and
$$\frac{x+3}{-36} = \frac{y-3}{2} = \frac{z-6}{4}$$
 is:

- a) (5, 7, -2)
- b) (-3, 3, 6)
- c) (2, 10, 4)
- d) $\left(21, \frac{5}{2}, \frac{10}{2}\right)$

Ans. (D)

92.The distance of the point (1, 2, 3) from the line through (-1, 2, 5) and (2, 3, 4) is:

a)
$$\sqrt{\frac{6}{11}}$$

b)
$$2\sqrt{6}$$

a)
$$\sqrt{\frac{6}{11}}$$
 b) $2\sqrt{6}$ c) $2\sqrt{\frac{6}{11}}$ d) $\sqrt{6}$

d)
$$\sqrt{6}$$

Ans. (C)

- 93. The equation of the plane through the line 2x - y = 0 = y - 3z and perpendicular to 4x + 5y - 3z = 8
- a) 8x y 9z = 0
- b) 2x 6y + 15z = 0
- c) 10x 6y + 3z = 0
- d) 28x 17y + 9z = 0

Ans. (D)

94. The distance of the point (-1, -5, -10) from the point of intersection of the line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and the

plane x - y + z = 5 is:

- a) 11
- b) 17
- c) 13
- d) 19

Ans. (C)

- **95.** The distance between the parallel 2x - 2y + z + 1 = 0 and 4x - 4y + 2z + 3 = 0 is:
- b) $\frac{5}{6}$ c) 2

Ans. (A)

- **96.** If \underline{a} is any vector, then $(\underline{a} \times \hat{i})^2 + (\underline{a} \times \hat{j})^2 + (\underline{a} \times \hat{k})^2$ is

- a) a^2 b) $2a^2$ c) $3a^2$ d) 0

Ans. (B)

- **97.** The value of λ , for which the three points, whose position vectors are $\hat{i} + \hat{j}$, $\hat{j} + \hat{k}$, $-\hat{i} + \hat{j} + \lambda \hat{k}$ will be collinear, is:
- a) 2 Ans. (A)
- b) -1
- c) -2
- d) 1

98. If $\hat{a}, \hat{b}, \hat{c}$ are unit vectors such that $\hat{a} \times (\hat{b} \times \hat{c}) = \frac{1}{2}\hat{b}$,

then angle between \hat{a} and \hat{c} is:

- a) $\frac{\pi}{6}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{2}$ d) $\frac{\pi}{3}$

Ans. (D)

- 99. figure formed four points $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 3\hat{j} + 5\hat{j} - 2\hat{k}$, $\hat{k} - \hat{j}$ is a:
- a) parallelogram
- b) rectangle
- c) trapezium
- d) square

Ans. (C)

- **100.** If $\underline{a},\underline{b},\underline{c}$ are any vectors, then $[\underline{a},\underline{b},+\underline{c}\,\underline{a},+\underline{b}+\underline{c}]$ is equal to:
- a) [a,b,c]
- b) 2[a, b, c]

c) 0

d) b.c+c.a+a.b

Ans. (C)

7

PHYSICS

- **101.** A silver and a copper voltameter are conencted in series with a 12.0 V battery of negligible internal resistance. If 0.806 g of silver is deposited in half an hour, the mass of copper deposited is:
- a) 0.625 g

b) 0.475 g

c) 0.525 g

d) 0.575 g

Ans. (B)

- **102.** Which of the following particles do not exist in the $_{92}U^{238}$ nucleus?
- a) 92 protons
- b) 92 electrons
- c) 146 neutrons
- d) none of these

Ans. (B)

- **103.** A monochromatic source of light operating at 200 W emits 4×10^{20} photons per second. The wavelength of the emitted light will be:
- a) 400 nm

b) 800 nm

c) 600 nm

d) 200 nm

Ans. (A)

- **104.** Larger aperture of telescope is used for :
- a) Greater Magnification
- b) Greater resolution
- c) Reducing lens aberration
- d) Reducing cost of manufacture

Ans. (B)

- 105. If the distance of 100 W lamp is increased from a photocell, the saturation current 'i' in the photocell varies with distance 'd' as:
- a) $i \propto d^2$

b) $i \propto d$

c) $i \propto 1/d$

d) $i \propto 1/d^2$

Ans. (D)

- **106.** The centre of mass of a body:
- a) lies always outside the body
- b) may lie within, outside or on the surface of the body
- c) lies always inside the body
- d) lies always on the surface of the body

Ans. (B)

- 107. The torque on a body is zero. Which of the following should not change?
- a) Linear velocity
- b) Angular velocity
- c) Force acting on the body
- d) Angular displacement

Ans. (B)

- **108.** A prism of 6° angle gives a deviation of 3° . The refractive index of the material of prism is:
- a) 1.5
- b) 2
- c) 0.5
- d) 1.8

Ans. (A)

- **109.** An alternating emf $E = E_0$ sin ω t produces a current $I=I_0$ sin $(\omega t - \pi/2)$ in a circuit. The power dissipated in the circuit is:
- a) $E_0 I_0 \sqrt{2}$

- b) $E_0 I_0 / 2$
- c) $E_0 I_0 / \sqrt{2}$
- d) Zero

Ans. (D)

110. A battery of emf 2.0 volts and internal resistance 0.10Ω is being charged with a current of 5.0 A. The potential difference between the terminals of the battery is

a) 2.0 V

c) 1.5 V

d) zero

Ans. (B)

- 111. An electric dipole is placed in an electric field generated by a point charge:
- a) The net electric force on the dipole must be zero
- b) The net electric force on the dipole may be zero
- c) The torque on the dipole due to the field must be zero
- d) The torque on the dipole due to the field may be zero Ans. (D)
- 112. A 60 kg man pushes a 40 kg man by a force of 60 N. The 40 kg man has pushed the other man with a force of:
- a) 40 N

b) 0

c) 60 N

d) 20 N

Ans. (C)

- 113. The Yung's modulus for a perfectly rigid body is:
- a) zero
- b) Infinity
- c) Unity
- d) Greater than 1 but less than ∞

Ans. (B)

- 114. The dimensions of Planck's constant are same as that of
- a) Frequency
- b) Angular momentum
- c) Kinetic energy d) Force

Ans. (B)

- 115. The relation between time 't' and distance 'x' is $t = \alpha x^2 + \beta x$, where $\alpha \& \beta$ are constants. The retardation is:
- a) $2\alpha v^3$

b) $2\beta v^3$

c) $2\alpha\beta v^3$

d) $2\beta^2 v^3$

Ans. (A)

- **116.** A train accelerates from rest at a constant rate α for distance x₁ and time t₁. After that it retards to rest at constant rate β for distance x_2 and time t_2 . Which of the following relations is correct?
- $a)\frac{x_1}{x_2} = \frac{\alpha}{\beta} = \frac{t_1}{t_2}$
- $b)\frac{x_1}{x_2} = \frac{\beta}{\alpha} = \frac{t_1}{t_2}$
- $c)\frac{x_1}{x_2} = \frac{\alpha}{\beta} = \frac{t_2}{t_1}$
- $d)\frac{x_1}{x_2} = \frac{\beta}{\alpha} = \frac{t_2}{t_1}$

Ans. (B)

- 117. Two forces of magnitude F have a resultant of the same magnitude F. The angle between the two forces is:
- a) 45°

b) 120°

c) 150°

 $d) 60^{\circ}$

Ans. (B)

- 118. The magnitude of momentum of a particle is increased by 100%. The increase in its kinetic energy is:
- a) 100%

b) 200%

c) 300 %

d) 400%

Ans. (C)

- **119.** A particle of mass 4m which is at rest explodes into three fragments. Two of the fragments each of mass m are found to move with a speed 'v' each in mutually perpendicular directions. The total energy released in this process:
- a) 0

b) $\frac{3}{2}$ mv²

c) $\frac{1}{2}$ mv²

d) 2mv²

Ans. (B)

- 120. Potential energy of a particle is related to x coordinate by equation $x^2 - 2x$. Particle will be in stable equilibrium at:
- a) x = 0.5

b) x = 1

c) x = 2

d) x = 4

Ans. (B)

- **121.** Internal forces can change:
- a) Linear momentum but not the kinetic energy
- b) Kinetic energy but not the linear momentum
- c) Linear momentum as well as kinetic energy
- d) Neither linear momentum nor kinetic energy

Ans. (B)

- **122.** Which of the following properties of a wave does not change with the change in medium?
- a) Frequency
- b) Velocity
- c) Wavelength
- d) Amplitude

Ans. (A)

123. Which one is correct?

- a) Joule = Coulomb \times Volt
- b) Joule = Volt \times Ampere
- c) Joule = Coulomb / Volt
- d) $Volt = Joule \times Coulomb$

Ans. (A)

124. What is the momentum of a photon of wavelength 6600 Å?

- a) 10^{-20} kg ms⁻¹ b) 10^{-29} kg ms⁻¹
- c) $10^{-27} \text{kg ms}^{-1}$ d) $10^{-22} \text{kg ms}^{-1}$

Ans. (C)

125. A p-type semiconductor is:

- a) Positively charged
- b) Negatively charged
- c) Uncharged
- d) Uncharged at 0°K but charged at higher temperature

Ans. (C)

126. Two identical p-n junctions are connected in series with a battery in three ways. The potential difference across the two p-n junctions are equal in:

- a) Circuit 1 and circuit 2 b) Circuit 2 and circuit 3
- c) Circuit 1 and circuit 3 d) circuit 1 only

Ans. (B)

- **127.** As compared to ¹²C atom, ¹⁴C atom has :
- a) Two extra protons and two extra electrons
- b) Two extra protons but no extra electron
- c) Two extra neutrons but no extra electron
- d) Two extra neutrons and two extra electrons

Ans. (C)

128. The pressure of a gas kept in an isothermal container is 200 kPa. If half the gas is removed from it, the pressure will be :

a) 100 kPa

b) 200 kPa

c) 400 kP

d) 800 kPa

Ans. (A)

129. Which of the following pairs of physical quantities may be represented in the same unit?

- a) Heat and temperature
- b) Temperature and mole
- c) Heat and work
- d) Specific heat and heat

Ans. (C)

- **130.** The mechanical equivalent of heat :
- a) has the same dimension as that of heat
- b) has the same dimension as that of work
- c) has the same dimension as that of energy
- d) is dimensionless

Ans. (D)

- **131.** A body cools down from 65°C to 60°C in 5 minutes. It will cool down from 60°C to 55°C in:
- a) 5 minutes
- b) less than 5 minutes
- c) more than 5 minutes
- d) less than or more than 5 minutes depending on whether its mass is more than or less than 1 kg.

Ans. (C)

- **132.** A proton and an electron are placed in a uniform electric field:
- a)The electric forces acting on them will be equal
- b) The magnitude of the forces will be equal
- c) Their accelerations will be equal
- d) The magnitude of their accelerations will be equal

Ans. (B)

133. The equivalent capacitance of the combination between A and B is:

a) C **Ans.** (**B**)

- **134.** A negatively charged particle projected towards east is deflected towards north by a magnetic filed. The field may be:
- a) Towards west
- b) Towards south
- c) Upwards
- d) Downwards

Ans. C

135. Transformers are used in :

- a) DC circuit only
- b) AC circuit only
- c) Both AC and DC circuits
- d) Neither AC nor DC circuit

Ans. (B)

136. For a Hydrogen atom, in which of the following transitions will the wavelength emitted photon be minimum?

- a) n = 5 to n = 4 b) n = 4 to n = 3
- c) n = 3 to n = 2 d) n = 2 to n = 1

Ans. (D)

- **137.** X-rays can be deflected:
- a) by an electric field
- b) by a magnetic filed
- c) by an electric as well as magnetic filed
- d) neither by an electric nor by a magnetic field

Ans. (D)

- 138. The change in frequency due to Doppler effect does not depend on:
- a) The speed of the source
- b) The speed of the observer
- c) The frequency of the source
- d) Separation between the source and the observer

Ans. (D)

139. Two periodic waves of amplitude A_1 and A_2 pass through a region. If $A_1 > A_2$, the difference in the maximum and minimum resultant amplitude possible is:

a) $2A_1$

b) 2A₂

c) $A_1 + A_2$

d) $A_1 - A_2$

Ans. (B)

140. The excess pressure inside a soap bubble is twice the excess pressure inside a second soap bubble. The volume of the first bubble is 'n' times the volume of the second bubble then 'n' is:

a) 8

b) 4

c) 2

d) 0.125

Ans. (D)

141. If a vector makes angle α , β , γ with x-axis, and z-axis respectively, then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$ is:

a) 0

b) 1

c) 2

d) 3

Ans. (C)

142. Find the equivalent resistance of the network between points a and b?

a) r

c) 3r

Ans. (B)

- **143.** The magnetic susceptibility is negative for :
- a) Paramagnetic materials only
- b) Diamagnetic materials only
- c) Ferromagnetic materials only
- d) Paramagnetic and ferromagnetic materials

Ans. (B)

144. The time constant of a L-R circuit is:

a) R/L

b) L/R

c) LR

Ans. (B)

145. Which of the following relation is correct?

a) $\sqrt{\varepsilon_0} E_0 = \sqrt{\mu_0}$

b) $E_0 = \sqrt{\mu_0 \epsilon_0} B_0$

c) $\sqrt{\mu_0 \varepsilon_0} E_0 = B_0$

d) $\sqrt{\mu_0} E_0 = \sqrt{\epsilon_0} B_0$

Ans. (B)

146. The motion of a particle is given by

 $x = A \sin \omega t + B \cos \omega t$. The motion of the particle is

- a) Not simple harmonic
- b) Simple harmonic with amplitude A + B
- c) Simple harmonic with amplitude (A+B)/2
- d) Simple harmonic with amplitude $\sqrt{A^2 + B^2}$

Ans. (D)

147. A small ink dot on a paper is viewed through a glass slab of thickness 15 cm and refractive index 1.5. By what distance would the dot appear to be raised?

a) 10 cm

b) 5 cm

c) 7.5 cm

d) 0 cm

Ans. (B)

148. A thin lens of focal length + 12 cm is immersed in water. What is its new focal length (Refractive index of glass = 1.5, Refractive index of water = 1.33)

a) 16 cm

b) 48 cm

c) 36 cm

d) 40 cm

Ans. (B)

- 149. If Young's double slit experiment is performed in
- a) The fringe width will decrease
- b) The fringe width will increase
- c) The fringe width will remain unchanged
- d) There will be no fringe

Ans. (A)

150. Consider the situation shown in figure. The straight wire is fixed but the loop car move under magnetic force. The loop will:

- a) Remain stationary
- b) Move towards the wire
- c) Move away from the wire
- d) Rotate about the wire

Ans. (B)

CHEMISTRY

- **151.** In analysis of third group contains of mixture analysis, solid NH_4Cl is added prior to NH_4OH for the following:
- a) availability of Cl⁻ ions
- b) availability of NH₄⁺ ions
- c) complete dissociation of NH₄OH
- d) controlled dissociation of NH₄OH

Ans. (D)

- **152.** 100 ml of an acid solution is neutralized by 50 ml of NAOH solution containing 0.2 g NAOH. The concentration of acid solution is :
- a) 0.1 N

b) 0.05 N

c) 0.5 N

d) 0.25 N

Ans. (A)

- **153.** An organic compound contains 38.8% carbon, 16% hydrogen & 45.2% nitrogen. Its empirical formula is :
- a) CH₃CN

b) C₂H₅CN

c) CH₂(NH₂)₂

d) CH₃NH₂

Ans. (D)

- **154.** I.U.P.A.C. name of $(CH_3)_2N-C_2H_5$ is :
- a) Dimethyl ethyl amine
- b) Dimethyl monoethyl amine
- c) N,N dimethyl amino ethane
- d) Dimethyl amino ethane

Ans.(C)

155. Which compound shows geometrical isomerism among the following?

$$CH_3 - C - H$$

 $CH_3 - C - H$

CH₃

b) HO-C-H | COOH

- c) $CH_3 CH = CH CH_3$
- d) CH₃CH₂COOC₂H₅

Ans.(AC)

- **156.** The most reactive compound towards nitration is :
- a) Toluene

b) benzene

c) benzoic acid

d) Nitrobenzene

Ans.(A)

157. Which of the following compounds reacts with an aqueous solution of $Ag(NH_3)OH$?

Indore : 3-A, Residency Area, Manoramaganj,

Mhow : 18, Vikram Nagar, Kishanganj, A.B. Road

a) Ethane

b) Ethene

c) 1 - Butyne

d) 2 - Butyne

Ans.(C)

11

- **158.** Which of the following compounds shows maximum boiling point?
- a) isooctane
- b) n octane
- c) 2,2,3,3 tetramethyl butane
- d) n butane

Ans.(B)

- **159.** HBr reacts faster with which of the following compounds?
- a) 2 methyl propane 2 ol
- b) propane 1–ol
- c) propane -2 ol
- d) 2 methyl propane 1 ol

Ans.(A)

160. When acetaldehyde is heated with Fehling's solution, it gives the precipitate of :

a) Cu

b) CuO

c) Cu₂O

d) $Cu + CuO + Cu_2O$

Ans.(C)

- **161.** The following reagent is used to distinguish between methanoic acid and ethanoic acid:
- a) Tollen's reagent

b) FeCl₃

c) NaOH solution

d) Na₂CO₃ solution

Ans.(A)

- **162.** The most basic compound among the following:
- a) Aniline

b) p - notroaniline

c) Acetanilide

d) Benzyleamine

Ans.(D)

- **163.** The reaction of phenol with excess of bromine water:
- a) m bromophenol
- b) o and p bromophenol
- c) 2,4 dibromophenol
- d) 2,4,6 tribromophenol

Ans.(D)

- **164.** Tissues in the organs of living beings are made up of:
- a) fat

b) carbohydrate

c) proteins

d) vitamins

Ans.(C)

- **165.** Metabolic function in human bodies is carried out by:
- a) lipids

b) peptides

c) nucleic acid

d) enzymes

Ans.(D)

- **166.** The polymer manufactured by condensation polymerization is :
- a) polyethylene
- b) polystyrene
- c) polythylene propylene
- d) polyvinyl chloride

Ans.(A)

MPPET 2012	
167. Which of the following exposure to sunlight?	polymers turns yellowish on
a) Polystyrene	b) Nylon
c) Polyethylene	d) Styrene butadiene resin
Ans.(D)	
168. The cause of instability a) high proton: electron ratio b) high proton: neutron ratio c) low proton: electron ratio	of nucleus is:

d) low proton: neutron ratio Ans.(D)

169. Which of the following sets of quantum numbers is restricted?

- a) n = 3, l=1, m = +2
- b) n = 3, 1 = 1, m =
- c) n = 3, 1 = 1, m = +1
- d) n = 3, 1 = 1, m = -1

Ans.(A)

170. The isotopes of an element have different :

- a) number of electrons and neutrons
- b) number of protons and neutrons
- c) number of electrons and protons
- d) number of neutrons only

Ans.(D)

171. The half life period of a radioactive element is 142 days. After 568 days one gram that element will reduce to: a) 0.5 g b) 0.25 g c) 0.125 g d) 0.0625 g Ans.(D)

172. The molecule having one unpaired electron is:

- a) CO
- b) O_2
- c) N_2
- d) NO

Ans.(D)

173. The number of molecular orbitals obtained by mixing two atomic orbitals from each of the atoms is:

- a) 2
- b) 3
- c) 4
- d) 6

Ans.(C)

174. The most suitable property for molecular weight determination of polymers is:

- a) Osmotic pressure
- b) Lowering of vapour pressure
- c) Elevation in boiling point
- d) Depression in freezing point

Ans.(A)

175. The number of nearest neighbours around each particle in a face centred cubic unit cell is:

- a) 4
- b) 6
- c) 8
- d) 12

Ans.(D)

176. In which mode of expression of concentration of a solution remains independent of temperature?

a) molarity

- b) molality
- c) formality
- d) normality

Ans.(B)

- **177.** Ionic solides are generally:
- a) good conductor of electricity
- b) soft
- c) volatile
- d) brittle

Ans.(D)

178. For the reaction

$$2NO_2(g) + \frac{1}{2}O_2(g) \Longrightarrow N_2O_5(g)$$

if the equilibrium constant is K_p, then the equilibrium constant for the reaction

$$2N_2O_5(g) \Longrightarrow 2N_2O_4(g) + O_2(g)$$

would be:

a) K_n^2

- b) $\frac{2}{K_{-}}$ c) $\frac{1}{K_{-}^{2}}$ d) $2K_{p}$

Ans.(C)

179. The equilibrium constant K_c for the reaction

$$SO_2(g) + NO_2(g) \Longrightarrow SO_3(g) + NO(g)$$

is 16. If one mole of all four gases is taken in a one litre container, the equilibrium concentration of SO₃ would be:

- a) 0.4 m
- b) 0.6 m
- c) 1.4 m
- d) 1.6 m

Ans.(B)

180. An acidic buffer solution could be prepared by mixing the solutions of the following

- a) Sodium accetate and acetic acid
- b) Ammonium sulphate and sulfuric acid
- c) Ammonium chloride and ammonium hydroxide
- d) Sodium chloride and hydrochloric acid

Ans.(A)

181. On increasing the temperature, the pKw:

- a) increase
- b) decreases
- c) remains constant
- d) may increase or decrease

Ans.(B)

182. The conjugate acid of NH₃ is:

- a) NH_{2}^{-}
- b) NH₂OH c) N₂H₄
- d) NH.

Ans.(D)

183. The bond enthalpy of H-H,Cl-Cl and H-Cl are 435, 243 and 431 kJ mol⁻¹ respectively. The enthalpy of formation of HCl(g) would be:

- a) 92 kJ mol⁻¹
- b) -92 kJ mol⁻¹
- c) 184 kJ mol⁻¹
- d) -184 kJ mol⁻¹

Ans.(B)

12 Indore : 3-A, Residency Area, Manoramaganj, 2:0731 - 2495865 Web : www.guptatutorials.com Mhow: 18, Vikram Nagar, Kishanganj, A.B. Road 2: 07324 - 226683 e-mail: Info@guptatutorials.com

- **184.** Among the following for spontaneity of chemical reaction there should be:
- a) decrease in entropy and increase in free energy
- b) decrease in entropy and free energy both
- c) increase in entropy and decrease in free energy
- d) increase in entropy and free energy both

Ans.(C)

- **185.** Which of the following processes is associated with decrease in entropy?
- a) Vapourization of a mole of water into steam at its B.P.
- b) Dissociation of a mole of common salt in water at 300°K
- c) Mixing of two partially miscible liquids
- d) Crystallization of a salt from its saturated solution Ans.(D)
- **186.** The reaction, $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$, is second order with respect to NO and order with respect to O₂. If the volume of reactant is suddenly reduced to half value, the rate of reaction would be:
- a) one-fourth of original value
- b) one-eighth of original value
- c) eight times of original value
- d) four times of original value

Ans.(C)

- **187.** For a first order reaction, the ratio of times to complete 99.9% and half of the reaction is:
- a) 8 b) 9 Ans.(C)
- c) 10
- d) 12

188. Molten sodium chloride conducts electricity through the following:

- a) free electrons
- b) free ions
- c) free molecules
- d) free atoms

Ans.(B)

189. In a galvanic cell the following reaction takes place at 298° K

$$Cr_2O_7^{2+} + 14H^+ + 6Fe^{2+} \rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$$

given that: $E^{\circ}(Cr_2O_7^{2-}, H^+, Cr^{3+}/Pt) = 1.33V$

$$E^{\circ}(Fe^{3+}, Fe^{2+}/Pt) = 0.77V$$

The standard e.m.f. of the cell is

- a) (1.33 + 0.77) V
- b) (1.33-0.77) V
- c) -(1.33+0.77) V
- d) (-1.33+0.77) V

Ans.(B)

- **190.** The colloidal solution is purified by the following process:
- a) disintegration
- b) peptization
- c) filtration
- d) dialysis

Ans.(D)

- **191.** Milk is a kind of:
- a) Sol
- b) Gel
- c) Emulsion d) Mixture

Ans.(C)

- **192.** The colour of Cu_2^{2+}
- a) White
- b) Blue
- c) Orange
- d) Yellow

Ans.(A)

193. Which one of the following is purest form of iron? b) Wrought iron c) Pig iron d) Steel a) Cast iron

Ans.(B)

- 194. A metal gets coated with a green basic carbonate when exposed to atomosphere. The metal is:
- a) Copper
- b) Zinc
- c) Iron
- - d) Iron

Ans.(A)

195. Which of the following elements has highest ionisatin potential?

a) B

- b) C
- c) N
- d) O

Ans.(C)

- 196. Maximum electron affinity is shown by the following:
- a) Cl
- b) Br
- c) N
- d) Na

Ans.(A)

- **197.** Bromine can be liberated from KBr solution by reaction with the following:
- a) Iodine solution
- b) Chlorine water
- c) Sodium chloride
- d) Potassium chloride

Ans.(B)

- 198. Which of the following compounds of xenon cannot be prepared?
- a) XeF
- b) XeF₂
- c) XeF₄
- d) XeF₆

Ans.(A)

- 199. The number of ions given by the complex compound Co(NH₃), Cl₂ Cl is:
- a) 2
- b) 3
- c) 4
- d) 5

Ans.(A)

- 200. When conc. HCl is added to the solution of Cr(NO₃)₂, then it slowly turns green due to formation of the following:
- a) CrCl₃

b) Cr₂O₃

c) CrO₄

d) Chlorocomplex

Ans.(B)

Pursuit of confidence and success gupla IUTORIALS

13 Indore : 3-A, Residency Area, Manoramaganj, Mhow: 18, Vikram Nagar, Kishanganj, A.B. Road

☎: 0731 - 2495865 Web : www.guptatutorials.com

2: 07324 - 226683 e-mail: Info@guptatutorials.com