N.B. (1) Question No. 1 is compulsory.
(2) Attempt any four questions from remaining questions.
(3) Assume suitable data if necessary with proper justifications.

1. (a) Show that the product of two even signals or two odd signals is an even signal and that product of an even and odd signal is odd signal.
(b) $\mathrm{x}_{1}(\mathrm{t})$ and $\mathrm{x}_{2}(\mathrm{t})$ are periodic signals with fundamental periods T_{1} and T_{2} respectively. Under what conditions the sum $x(t)=x_{1}(t)+x_{2}(t)$ is periodic, and what is fundamental period if $\mathrm{x}(\mathrm{t})$ is periodic ?
(c) Determine whether the following signals are energy signals, power signals or neither :-
(i) $x(t)=e^{-a t} u(t), a>0$
(ii) $x(t)=t u(t)$
(d) Prove that $\delta(a t)=\frac{1}{|q|} \delta(t)$
2. (a) Show that following signals are orthogonal over an interval [0,1]:

$$
f(t)=x(t) \quad x(t)=\sqrt{3}(1-2 t)
$$

(b) Explain Gibbs's phenomenon.
(c) For the waveform $\mathrm{x}(\mathrm{t})$ shown in figure, find traingular Fourier Series using differentiation technique.

3. (a) A continuous time system whose input $x(t)$ and output $y(t)$ ar related by :-

$$
\frac{d y(t)}{d t}+a y(t)=x(t)
$$

where a is constant.
(i) Show that system is not linear if

$$
y(0)=y_{0} \neq 0
$$

(ii) Show that system is linear if $\mathrm{y}(0)=0$.
(b) Evaluate

$$
\int_{-3}^{6}\left(6-t^{2}\right)[\delta(t+4)+2 \delta(2 t+4)] d t
$$

(c) System shown below is formed by connecting two systems is cascade with

$$
h_{1}(t)=e^{-2 t} u(t) \quad h_{2}(t)=2 e^{-t} u(t)
$$

Find impulse response $h(t)$ of overall system

Con. 5767-CD-6012-07.
4. (a) Find Fourier transform of a gate function.
(b) Using results in (a) and not otherwise find Fourier transform of :
(c) State and prove Parseval's theorem.
5. (a) Find inverse Laplace transform of:

$$
X(s)=\frac{2+2 s e^{-2 s}+4 e^{-4 s}}{s^{2}+4 s+3} \quad \operatorname{Re}(s)>-1
$$

(b) The output $y(t)$ of a continuous LTI system is found to be $2 e^{-3 t} u(t)$ when input $x(t)$ is $u(t)$.
(i) Find impulse response $h(t)$ of system.
(ii) Find output $y(t)$ when input $x(t)$ is $e^{-t} u(t)$.
6. (a) Find the response of system

$$
\frac{d^{2} y(t)}{d t^{2}}+\frac{5 d y}{d t}+6 y(t)=x(t)
$$

subject to initial conditions $y(0)=2, y^{\prime}(0)=1$ and input $x(t)=e^{-t} u(t)$.
(b) For signal $x(t)$ shown sketch and label
(i) $x(t-2)$
(ii) $x(2 t)$
(iii) $x(t / 2)$
(iv) $x(-t)$

7. (a) For a continuous time LTI system shown in figure find state space representation of system.

(b) FInd $e^{A t}$ for $A=\left[\begin{array}{cr}0 & 1 \\ -6 & -5\end{array}\right]$.
(c) State and prove Sampling theorem.

