S.E. (comp) SemIII (R) 15-5-09

May 09 HP 12
Con. 2663-09. Electronics Devices & Linear Civails 3-6pm.
(REVISED COURSE) VR-3315

(3 Hours)

N.B.:— (1) Question No. 1 is compulsory.

(2) Attempt any four questions out of the remaining six questions.

(3) Assume suitable data if necessary.

. Attempt any five :-

- (a) What are the various regions that a transistor can operate? In which region should be a transistor operated if it is to be used as switch?
- (b) Explain why CE configuration is popular in amplifier circuits.
- (c) Draw and explain the block-diagram of operational amplifier.
- (d) Derive the equation for On-time of the output in monostable multivibrator.
- (e) Write short note on series voltage regulator.
- (f) Derive the equation for transconductance in terms of pinch-off voltage and saturation drain current.
- (g) With the circuit diagram explain voltage-follower and draw input-output waveforms.
- (a) Draw small-signal h-parameter model of the BJT and define the terms h_{ie}, h_{re}, h_{fe} and h_{oe} for the same.
 - (b) With approximate analysis, for the amplifier shown in **figure 1**, calculate the R_i , A_{is} and A_{vs} . The h-parameters of the transistor are : h_{ie} = 1 k Ω , h_{fe} = 50, h_{re} = 2.4×10^{-4} and h_{oe} = 25×10^{-6} .

Fig. 1

[TURN OVER

[Total Marks 100

20

5

economics vences a

- 3. (a) For n-channel FET $I_{Dss} = 5.8 \text{ mA}$, $V_p = -3 \text{ V}$ and $V_{GS} = -2 \text{ V}$ find I_D , g_m , g_{mo} .
 - (b) For the network shown in **figure** 2 determine I_D , V_{GS} , V_G , V_D , V_S and V_{Ds} .

15

10

- (a) Using IC 555 design Astable multivibrator for output frequency of 5 kHz and duty cycle of 70%. Draw the related waveforms.
 - (b) Explain in detail any two applications of a monostable multivibrators.
- 5. (a) Design a voltage regulator using IC 723 to meet the following specifications : $V_o = 5V$, $I_o = 75$ mA, $V_{in} = 15$ V, $I_{sc} = 150$ mA, $V_{sense} = 0.7$ V
 - (b) Explain the digital Ramp ADC with neat block-diagram.
- (a) Design a practical integrator for the output frequency of 5 kHz. Draw the inputoutput wave forms.
 - (b) Draw and explain one application of an instrumentation amplifier.
- 7. Write short notes on (any four):-
 - (a) Inverting Schmitt-trigger
 - (b) Properties of Ideal Op-Amp*.
 - (c) ZCD
 - (d) Foldback current Limiting protection.
 - (e) Small signal amplifiers.