Physics Question Paper 2004

General Instructions

- 1. Section I is compulsory. Attempt any four questions from Section II.
- 2. The intended marks for questions or parts of questions are given in brakets.

SECTION I (40 Marks)

Attempt all questions from this Section

Question 1

- (a) (i) Explain why scissors for cutting cloth may have blades much longer than the handles; but shears for cutting metals have short blades and long handles.
- (ii) A woman draws water from a well using a fixed pulley. The mass of the bucket and water together is 6.0 kg. The force applied by the woman is 70 N. Calculate the mechanical advantage. (Take $g = 10 \text{ m/s}_2$) [4]
- (b) (i) State the energy changes in an oscillating pendulum.
- (ii) Two balls of mass ratio 1 : 2 are dropped from the same height.
- i. State the ratio between their velocities when they strike the ground.
- ii. The ratio of the forces acting on them during motion. [4]
- (c) (i) A piece of ice floating in a glass of water melts but the level of water in the glass does not change. Explain this phenomenon.
- (ii) An inflated gas balloon is placed in a jar which is connected to an evacuating pump. What will be observed if the air inside the jar is pumped out? Give a reason justifying your answer.[4]
- (d) (i) Define 'critical angle.'
- (ii) A ray of light passes through a right angled prism as shown in the figure. State the angles of incidence at the faces AC and BC.[4]

- (e) (i) 1. White light is passed through a yellow fillter. What colour is (colours are) seen on a screen placed at the end?
- 2. If the light emerging from the yellow filter is then passed through a red filter, what will be seen on the screen placed at the end?
- (ii) What is Sonar? State the principle on which it is based.[4]
- (f) (a) Differentiate between resonance and forced vibrations.
- (ii) The wavelength of waves produced on the surface of water is 20 cm. If the wave velocity is 24 ms-1, calculate :
- 1. The number of waves produced in one second and
- 2. The time required to produce one wave.[4]
- (g) (a) State the purpose of a fuse in an electric circuit. Name the material used for making a fuse wire.
- (b) Mention two factors on which the internal resistance of a cell depends.[4]
- (h) (a) Draw a labelled diagram to show the various components of a step-down transformer.
- (b) State the main difference between a step-up and step-down transformer.[4]
- (i) (i) In winter, the weather forecast for a certain day was 'severe frost'. A wise farmer

watered his yields the night before to prevent frost damage to his crops. Why did he water his fields?

- (ii) 10125 J of heat energy boils off 4.5 g of water at 100₀C to steam at 100₀C. Find the specific latent heat of steam.[4]
- (j) (a) Define the term 'Work function' of a metal.
- (b) Mention two common properties of gamma radiations and visible light.[4]

SECTION - II (40 Marks)

Answer any four questions from this section

Question 2

- (a) State Newton's second law of motion both in words and in equation form. Under what condition does this equation become F = ma? [4]
- (b) The radius of the driving wheel of a set of gears is 18 cm. It has 100 teeth and rotates at a speed of 30 rpm. The driven wheel rotates at a speed of 150 rpm. Calculate:
- i. The gear ratio.
- ii. The number of teeth on the driven wheel.
- iii. The radius of the driven wheel.[4]
- (c) A ball of mass 0.20 kg is thrown vertically upwards with an initial velocity of 20 m/s. Calculate the maximum potential energy it gains as it goes up.[2]

Question 3

- (a) (i) State 'Archimedes' Principle.
- (ii) A cargo ship is loaded in sea water to maximum capacity. What will happen if this ship is moved to river water? Give a reason for your answer.
- (iii) A body of mass 100 g is floating in water. What will be its apparent weight? Justify your answer. [5]
- (b) A small stone of mass m = 200g is held under water in a tall jar and allowed to fall as shown in the figure. The free body diagram of the stone is also shown.
- i. What do F2 and ml represent?
- ii. Calculate the net force acting on the stone and
- iii. Its acceleration, as it falls through water. (Neglect the force due to viscosity. Take the volume of the stone as 80 cm_3 , density of water as 1.0 g/cm_3 and the acceleration due to gravity, $g = 10 \text{ m/s}_2$.) [5]

Question 4

- (a) The diagram given below shows an object O and its image I. Copy the diagram and draw suitable rays to locate the lens and its focus. Name the type of lens in this case. [4]
- (b) (i) State Snell's law.
- (ii) Calculate the velocity of light in a glass block of refractive index 1.5. (Velocity of light in air = 3×108 ms₋₁) [4]
- (c) (i) What is an optical fibre?
- (ii) Give one practical use of an optical fibre. [2]

Question 5

- (a) A thermos flask of negligible heat capacity contains 100 g of ice and 30g of water.
- (i) Calculate:
- i. The mass of steam at 100₀C needed to condense in the flask to just melt the ice;
- ii. The amount of water in the flask after condensation.

(Specific latent heat of vaporization of steam = 2260 J/g

Specific latent heat of fusion of ice = 336 J/g

Specific heat capacity of water = $4.2 \text{ J/g}_{0}\text{C}$.)

iii. Is it possible to condense the water formed, back to ice by adding ice at 0₀C?

Explain, giving a suitable reason to justify your answer. [6]

- (b) (i) State the principle of calorimetry.
- (ii) Express l kWh in terms of S.I. unit of energy.
- (iii) Which of the two, 1 g of ice at 0₀C or 1 g of water at 0₀C contains more heat? Give a reason for your answer.[4]

Question 6

- (a) An electric bulb rated 220 V, 60W is working at full efficiency.
- i. State the resistance of the coil of the bulb.
- ii. Another identical bulb is connected in series with the first one and the system is connected across the mains as shown below.
- (1) State the rate of conversion of energy in each bulb.
- (2) Calculate the total power.
 - (3) What will be the total power, if the bulbs are connected in parallel? [6]

(b) Explain briefly how a magnet, can be demagnetised using an alternating current? [2] State two ways by which the emf in an A.C. generator can be increased. [2]

Question 7

- (a) (i) Copy and complete the below diagram by showing and labelling the paths of alpha, beta and gamma radiations in an electric field.
 - (ii) Name the radiations which have the least penetrating power.[4]

- (b) (i) Give one difference between a chemical change and a nuclear change.
- (ii) How is the cathode ray tube used to convert an electrical signal into a visual signal? [3]
- (c) Copy and complete the following nuclear equations by filling in the correct values in the blanks. [3]

 $92P238-\alpha \rightarrow ...P1...-\beta \rightarrow ...P2...-\beta \rightarrow ...P3...$