B3.2-R3: BASIC MATHEMATICS

NOTE:

1 2	
Time: 3 Hours Total Marks: 100	
1.	
a)	If $\vec{a} = 2\vec{i} + \vec{j} - 3\vec{k}$ and $\vec{b} = \vec{i} - 2\vec{j} + \vec{k}$, then find a vector of magnitude 4 perpendicular to both \vec{a} and \vec{b} .
b)	Find $\lim_{x \to 0} \frac{3^x - 2^x}{x}$
c)	Find the value of the determinant $\Delta = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ b+c & c+a & a+b \end{vmatrix}$ Evaluate $\int \frac{dx}{x(x^4 + I)}$
d)	
e)	Find the area of region bounded by the parabola $y^2=4x$ and its latus rectum.
f)	Find the equation of the tangent to the curve x=cos θ and y=sin θ at $\theta = \frac{\Pi}{4}$.
g)	Test the convergence/divergence of the series: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
	(7x4)
2. a)	Find the value of the constant p so that the vectors $\vec{a} = 2\vec{i} - \vec{j} + \vec{k}, \vec{b} = \vec{i} + 2\vec{j} - 3\vec{k}$ and $\vec{c} = 3\vec{i} + p\vec{j} + 5\vec{k}$ are coplanar.
b)	Using DeMoivre's theorem, find the value of $\left(1 + \cos\frac{\Pi}{3} + i\sin\frac{\Pi}{3}\right)^6$.
c)	Reduce the matrix $\begin{bmatrix} 3 & -1 & 1 \\ -6 & 2 & -4 \\ -3 & 1 & -2 \end{bmatrix}$ to echelon form and hence find its rank.
•	(6+6+6)
3. a)	Examine the continuity of the following function at $x = 0$ $f(x) = \begin{cases} \frac{\cos 4x - \cos 2x}{x^2} , & \text{if } x \neq 0 \\ 5 , & \text{if } x = 0, \end{cases}$ If $y = \log(1 + \cos x)$, and $2\left(\frac{dy}{dx}\right)\left(\frac{d^2y}{dx^2}\right) + \frac{d^3y}{dx^3} = c$, determine the value of c.
b)	If y=log(1+cosx), and $2\left(\frac{dy}{dx}\right)\left(\frac{d^2y}{dx^2}\right) + \frac{d^3y}{dx^3}$ = c, determine the value of c.
d)	Solve the following system of equations by Cramer's rule: 2x + y + z = 7 3x - y - z = -2
	$x + 2y - 3z = -4 \tag{6+6+6}$

4.
a) If
$$\int_{2}^{1} f(x) dx = 7$$
 and $\int_{2}^{1} f(x) dx = 3$, find $\int_{2}^{1} f(x) dx$.
b) Examine the convergence and absolute convergence of the series: $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$.
c) Find the points of local maxima or local minima, if any, of the function $f(x) = \sin 2x - x$, $\frac{-\Pi}{2} \le x \le \frac{\Pi}{2}$.
d) Evaluate $\int_{1}^{1} |2x - 3| dx$.
(3+6+6+3)
a) Obtain the asymptotes of the curve: $(x+y)^{2}=xy^{2}$.
b) Find the vertex and focus of the parabola $\frac{y^{2}-4y-2x-8-0}{y^{2}-4y-2x-8-0}$
c) Obtain the Taylor's series for the function $f(x) = \cos 2x$ at $x=0$.
d) Draw the graph of the function
 $f(x) = \begin{cases} x, \quad \text{when } 0 \le x \le \frac{1}{2} \end{cases}$.
(6+4+4+4)
6.
a) I) Examine the validity of the Rolle's theorem for the function
 $f(x) = \cos x$ in $\begin{bmatrix} 0, \frac{\Pi}{2} \end{bmatrix}$.
ii) Verify Lagrange's mean value theorem for the function
 $f(x) = \sqrt{x^{2} - 4}$ in [2, 4].
b) Evaluate $\int_{0}^{2} (x\sqrt{x+2}) dx$.
c) Find the equation of the circle which touches y-axis and whose center is (1, 2).
d) If $\vec{a} = 3\overline{1} - \overline{j} - 2\overline{k}$ and $\overline{b} = 2\overline{1} + 3\overline{j} + \overline{k}$, then find $|\langle \vec{a} + \overline{b} \rangle \times \langle \vec{a} - \overline{b} \rangle$
(6+4+4+4)
7.
a) Classify the following Conics in terms of parabola, ellipse or hyperbola:
i) $x^{2} 3xy + y^{2} + 10x + 10y + 21 = 0$
ii) $22x^{2} - 12xy + 17y^{2} + 112x + 92y + 178 = 0$
b) Find the values of x and y if $A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} x & y \\ 1 & 2 \end{pmatrix}$ and $(A+B)^{2}=A^{2}+B^{2}$.
c) Find $\frac{dy}{dx}$, when $y = \frac{x(x^{2} + 4)^{\frac{y}{2}}}{(x^{2} + 3)^{\frac{y}{2}}}$.
d) Show that the following system of equations has infinite number of solutions:
 $x - 2y + 3z = 0, 2x + 4y + z = 0, 3x + 2y + 4z = 0$
(6+4+4+4)