S.E. (Production \& Production Sandwich)
(I Sem.) EXAMMNATION, 2010
STRENGTH ANALYSIS OF MACHINE ELEMENTS (2008 COURSE)

Time : Three Hours
Maximum Marks 100
N.B. :- (i) Answer one question from each unit of Secin I and Section II.
(ii) Answers to the two Sections should be riten in separate answer-books.
(iii) Figures to the right indicate 2 marks.
(iv) Neat diagrams must be daw wherever necessary.
(v) Use of non-programmale electronic pocket calculator is allowed.
(vi) Assume suitable data, necessary.

\bigcirc UNIT I

1. (a) A hollow cylinder 2 m has an outside diameter of 50 mm and insid ${ }^{\text {a mameter of } 30 \mathrm{~mm} \text {. If the cylinder is carrying a }}$ load 25 kN , find the stress in the cylinder. Also find the deforstion of the cylinder, if modulus of elasticity for the (T). der material is 100 GPa .
P.T.O.
(b) A steel bar 2 m long and 40 mm in diameter is subjected to an axial pull of 80 kN . Find the length of the 20 mm diameter bore, which should be centrally carried out, so that the total elongation should increases by 20% under the same pull. Take E for the bar material as 200 GPa .

Or

2. (a) Derive the equation of thermal stress in a simple far in terms of coefficient of linear expansion and modulus of elasticity. [6]
(b) A steel rod 20 mm diameter passes centrall through a copper tube of 25 mm internal diameter and 35 mrev ernal diameter. Copper tube is 800 mm long and is cred by rigid washers of negligible thickness, which are 6 ned by nut threaded on the rod as shown in Fig. 1he nuts are tightened till the load on the assembly is 20 kN . alculate the initial stresses in the copper tube and stael Nod. Also calculate increase in the stresses, when one nos tightened by one-quarter of a turn relative to the ower. Take pitch of the thread as 1.6 mm . $\left(\mathrm{E}_{\text {steel }} \not 200 \mathrm{GPa}\right.$ and $\mathrm{E}_{\text {copper }}=100 \mathrm{GPa}$) [10]

Fig. 1

UNIT II

3. (a) A cantilever beam 4 m long carries a gradually varying load, zero at the free end to $3 \mathrm{kN} / \mathrm{m}$ at the fixed end. Draw bending moment diagram and shear force diagram for the beam.
(b) A simply supported beam $\mathrm{AB}, 6 \mathrm{~m}$ long is loaded as hon in Fig. 2. Construct the shear force and bending moment diagram for the beam and find the position and value of to mum bending moment.

4. (a) A simply supported beam AB of span 2.5 m is carrying two point loads as shes in Fig. 3. Draw shear force diagram and bending

Fig. 3
(b) Shear force diagram for a loaded beam is shown in Fig. 4. Determine the loading on the beam and hence draw the bending moment diagram. Locate the point of contraflexure,

5. (a) A cantilever bea is rectangular in section having 80 mm width and 120 mm depth. If the cantilever is subjected to a pind load of 6 kN at the free end and the bending is not to exceed 40 MPa , find the span of the cantilever
(b) A T-shaped cross-section of a beam shown in Fig. 5, is subjected to a vertical shear force of 100 kN . Draw shear stress distribution diagram. Moment of inertia about the horizontal neutral axis is $113.4 \times 10^{6} \mathrm{~mm}^{4}$.

6. (a) A timber beam of rectangular section supports a load of 20 kN 4 , iformly distributed over a span of 3.6 m . If depth of beam section is twice the width and maximum stress not to exceed 7 MPa , find the dimensions of the beam ection.
(b) A cast iron bracket subjected to bending, has a cross-section of I-shape with unequal flanges as shown in Fig. 6. If the compressive stress in top flange is not to exceed 17.5 MPa , what is the bending moment, the section can take ? the section is subjected to a shear force of 100 kN , davw the shear stress distribution over the depth of the section. [10]

50

SECTION II

UNIT IV
7. (a) Two timber pieces of section $60 \mathrm{~mm} \times 100 \mathrm{~mm}$ are joined with epoxy along a plane inclined at 30° to the X-axis. the maximum force the member can sustain if the stangth of the joint is 5 MPa in tension and 3 MPa in she r . [8]
(b) At a point in a bracket the normal stresses on (wo mutually perpendicular planes are $120 \mathrm{~N} / \mathrm{mm}^{2}$ tensile and $60 \mathrm{~N} / \mathrm{mm}^{2}$ tensile. The shear stress across these pl is $30 \mathrm{~N} / \mathrm{mm}^{2}$. Find using the Mohr's stress circle, the principal stresses and maximum stress at the point.
8. (a) A mass of 200 kg falls ang a height of 500 mm on a concrete column of $300 \mathrm{~mm}>400 \mathrm{~mm}$ section. Determine the maximum stress and formation in the 4 m long column, if Young's modulus of concrete is 20 GPa .
(b) A 10 mm diamet mild steel bar of length 1.5 m is stresses by a weitht of 120 dropping freely through 20 mm before commeng to stretch the bar. Find the maximum instrumeous stress and the elongation produced in the bar, $\mathrm{A}=200 \mathrm{GPa}$.

UNIT V

9. (a) Determine the maximum stress and deformation of a shaft of 100 mm diameter and 2.7 m length subjected to a torque of 30 kNm . Assume $\mathrm{G}=75 \mathrm{GPa}$ for the material 8]
(b) A hollow steel shaft 3 m long transmits a torque 24 kNm . The total angle of twist is not to exceed 2.5° an the allowable shear stress is 90 MPa . Determine inside and outside diameter of shaft. G $=85 \mathrm{GPa}$.
10. (a) A solid shaft of 200 mm diam has the same cross-sectional area as that of a hollow of the same material with inside diameter 150 mm . Find thatio of power transmitted by the two shafts at the same speed.
(b) Find the the shaft to transmit 60 kW at 150 r.p.m. if the maximum torque is likely to exceed the mean orque by 25% for a maximum permissible shear stress $\mathrm{N} / \mathrm{mm}^{2}$. Find also the angle of twist for a length of 2.5 m .
11. (a) A cantilever of length 2 m carries a uniformly distributed load of $2500 \mathrm{~N} / \mathrm{m}$ for a length of 1.25 m from the fixed end and a point load of 1000 N at the free end. If the section is rectangular 120 mm wide and 240 mm deep, find the dosect n at the free end. Take $\mathrm{E}=10000 \mathrm{~N} / \mathrm{mm}^{2}$.
[10]
(b) A cast iron beam 40 mm wide and 80 mm deep is simply supported on a span of 1.2 m . The beam cme a point load of 15 kN at the center. Find the defle tion at the center.
Take $E=108000 \mathrm{~N} / \mathrm{mm}^{2}$.
12. (a) What is meant by equialen length of columns ? What are its values for different end conditions of columns ?
(b) A column has height of 7 m . It is hinged at both ends and cross-section is rectangular $80 \mathrm{~mm} \times 120 \mathrm{~mm}$. Calculate buckling by Euler's formula. $E=180$ GPa.
