MATHEMATICS

(Option II)

- 1. The function $f(x) = \frac{x |x|}{x}$ is continuous for :
 - (A) all x
 - (B) all x except zero
 - (C) x = 0 only
 - (D) None of the above
- 2. The value of c in (0, 4) such that the function f(x) = (x 1)(x 2)(x 3) satisfies Lagrange's mean value theorem is:
 - (A) $1 \pm \frac{2}{\sqrt{3}}$
 - (B) $2 \pm \frac{2}{\sqrt{3}}$
 - (C) $3 \pm \frac{2}{\sqrt{3}}$
 - (D) $2 \pm \sqrt{\frac{2}{3}}$
- 3. What is the value of $\lim_{x\to\infty} \left(\frac{1}{x}\right)^{1/x}$?
 - (A) -1
 - (B) 0
 - (C) 1
 - (D) None of the above
- 4. What is the (n + 1)th derivative of $y = x^n \log x$?
 - (A) $\frac{n!}{x}$
 - (B) $\frac{(n+1)!}{x}$
 - (C) $\frac{n!}{r^2}$
 - $(D) \quad \frac{(n+1)!}{x^2}$

- 5. What is the radius of curvature at any point of the cardiod $2ap^2 = r^3$?
 - (A) $\frac{3ap}{r^2}$
 - (B) $\frac{4ar}{3p}$
 - (C) $\frac{4pr}{3a}$
 - (D) $\frac{4ap}{3r}$
- 6. What is the number of asymptotes of the curve $y^2 = 8x$?
 - (A) zero
 - (B) one
 - (C) two
 - (D) three
- 7. What is the modulus of the complex number $1 \cos 2\alpha + i \sin 2\alpha$?
 - (A) 2 cos α
 - (B) $\cos \frac{\alpha}{2}$
 - (C) 2 sin α
 - (D) $\sin \frac{\alpha}{2}$
- 8. What is the continued product of the four values of $\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{3/4}$?
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) None of the above

- 9. What is period of tanh x?
 - (A) πi
 - (B) $2\pi i$
 - (C) $\frac{\pi i}{2}$
 - (D) None of the above
- 10. What is the sum of the series?

$$\sin^2 \alpha + \sin^2 \alpha \sin 2\alpha + \sin^3 \alpha \sin 3\alpha + \dots$$

to infinity?

(A)
$$\frac{\sin^2\alpha}{1+\sin 2\alpha + \sin^2\alpha}$$

(B)
$$\frac{\sin^2 \alpha}{1 - \sin 2\alpha + \sin^2 \alpha}$$

(C)
$$\frac{\sin^2 \alpha}{1 - \sin 2\alpha - \sin^2 \alpha}$$

- (D) None of the above
- 11. If a tangent to the parabola $y^2 = 12x$ makes an angle of 60° with the axis, then the point of contact is:

(A)
$$\left(1, 2\sqrt{3}\right)$$

(B)
$$\left(2, 2\sqrt{3}\right)$$

(C)
$$\left(1, \sqrt{3}\right)$$

- (D) None of the above
- 12. What is the equation of the director circle to the ellipse $9x^2 + 4y^2 = 1$?

(A)
$$36(x^2 - y^2) = 13$$

(B)
$$36(x^2 + y^2) = 13$$

(C)
$$13(x^2 + y^2) = 36$$

(D) None of the above

- 13. What is the sum of the eccentric angles of the feet of the normals drawn from any point to the ellipse $b^2x^2 + a^2y^2 = a^2b^2$?
 - (A) 2nπ
 - (B) 4nπ
 - (C) $(2n+1)\pi$
 - (D) None of the above
- 14. The difference of the eccentric angles of the extremities of two conjugate diameters to the ellipse is:
 - (A) $\frac{\pi}{2}$
 - (B) $\frac{\pi}{3}$
 - (C) $\frac{\pi}{4}$
 - (D) $\frac{\pi}{6}$
 - 15. The equation of the normal to the hyperbola $5x^2 4y^2 = 20$ at $(2, \sqrt{3})$ is:
 - (A) $2\sqrt{3}x + 5y + 9\sqrt{3} = 0$
 - (B) $2\sqrt{3}x 5y + 9\sqrt{3} = 0$
 - (C) $2\sqrt{3}x + 5y 9\sqrt{3} = 0$
 - (D) None of the above
 - 16. What is the latus rectum of the parabola $x^2 + 2xy + y^2 2x 1 = 0$?

18

- (A) $\frac{1}{\sqrt{3}}$
- (B) $\frac{1}{\sqrt{5}}$
- (C) $\frac{2}{\sqrt{3}}$

Stat.

(D) None of the above

- 17. If a straight line makes an angle of $\frac{\pi}{4}$ with each of x-axis and y-axis, then the angle which it makes with z-axis is:
 - (A) $\frac{\pi}{2}$
 - \cdot (B) $\frac{\pi}{3}$
 - (C) $\frac{\pi}{4}$
 - (D) None of the above
- 18. What is the equation of the plane through the point (2, 3, 4) and parallel to the plane 5x 6y + 7z = 3?
 - (A) 5x + 6y + 7z = 20
 - (B) 5x + 6y 7z = 20
 - (C) 5x 6y 7z = 20
 - (D) None of the above
- 19. When two straight lines are said to be skew?
 - (A) they are parallel
 - (B) they are intersecting
 - (C) they are neither parallel nor intersecting
 - (D) None of the above
- 20. What is the equation of the sphere which passes through the origin and makes equal intercepts of unit length on the axes?
 - (A) $x^2 + y^2 + z^2 = x + y + z$
 - (B) $x^2 y^2 z^2 = x + y + z$
 - (C) $x^2 y^2 + z^2 = x + y + z$
 - (D) $x^2 + y^2 z^2 = x + y + z$

- 21. What is the equation of the plane which cuts the sphere $x^2 + y^2 + z^2 = a^2$ in a circle with centre (1, 2, 3)?
 - (A) x 2y + 3z = 14
 - (B) x + 2y + 3z = 14
 - (C) x 2y 3z = 14
 - (D) None of the above
- 22. If two spheres of radii 3 and 4 cut orthogonally, then the radius of the common circle is:
 - (A) $\frac{5}{12}$
 - (B) $\frac{12}{5}$
 - (C) $\frac{12}{\sqrt{5}}$
 - (D) $\frac{\sqrt{5}}{12}$
- 23. The equation of the cone whose vertex is (0, 0, 0) and whose base is the curve $x^2 + y^2 = 4$, z = 2 is:
 - $(A) \qquad x^2 + y^2 = z^2$
 - $(B) \qquad x^2 y^2 = z^2$
 - (C) $x^2 + z^2 = y^2$
 - (D) $y^2 + z^2 = 2x^2$
- 24. What is the condition for the line $\frac{x-2}{l} = \frac{y-1}{m} = \frac{z-3}{n}$ to touch the ellipsoid

$$3x^2 + 8y^2 + z^2 = c^2 ?$$

- (A) 6l + 8m + 3n = 0
- (B) 6l 8m + 3n = 0
- (C) 6l + 8m 3n = 0
- (D) None of the above

- 25. What is the number of normals that can be drawn from any point to the conicoid $ax^2 + by^2 + cz^2 = 1$?
 - (A) 3
 - (B) 4
 - (C) 5
 - (D) 6
- 26. $\int \frac{e^x}{x} (1 + x \log x) dx \text{ equals } :$
 - (A) $e^x \log x + c$
 - (B) $\log \log x + c$
 - (C) $e^x + \log x + c$
 - (D) $e^x \log x + c$
- 27. $\int \frac{dx}{(x+2)\sqrt{x-1}} \text{ equals } :$
 - (A) $\frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{x-1}{3}\right) + c$
 - (B) $\frac{2}{\sqrt{3}}\tan^{-1}\left(\sqrt{\frac{x-1}{3}}\right) + c$
 - (C) $\frac{\sqrt{3}}{2}\tan^{-1}\left(\frac{x-1}{3}\right) + c$
 - (D) $\frac{\sqrt{3}}{2}\tan^{-1}\left(\sqrt{\frac{x-1}{3}}\right) + c$
- 28. If $f_n = \int_0^{\pi/4} \tan^n x \, dx$, then $f_n + f_{n-2}$ equals :
 - $(A) \quad \frac{1}{n-3}$
 - $(B) \quad \frac{1}{n-2}$
 - (C) $\frac{1}{n-1}$
 - (D) $\frac{1}{n}$

29. $\lim_{n\to\infty} \sum_{n\to\infty} \left(\frac{n!}{n^n}\right)^{1/n}$ equals:

- (A) e
- (B) $\frac{1}{e}$
- (C) e²
- (D) $\frac{1}{e^2}$

30. The area of a loop of the curve $3ay^2 = x(x-a)^2$ is:

- (A) $\frac{8a^2}{15\sqrt{3}}$
- (B) $\frac{8\alpha^2}{15\sqrt{5}}$
- (C) $\frac{8a^2}{5\sqrt{3}}$
- $(D) \quad \frac{8a^2}{3\sqrt{5}}$

31. A vector f is said to be irrotational if:

- (A) $\operatorname{div} f = 0$
- (B) $\operatorname{curl} f = 0$
- (C) $\operatorname{grad} f = 0$
- (D) None of the above

32. What is the integrating factor of the differential equation :

$$x\cos x\left(\frac{dy}{dx}\right)+y(x\sin x+\cos x)=1?$$

- (A) x sec x
- (B) $x \tan x$
- (C) $x \sin x$
- (D) $x \cos x$

33. What is the particular integral of the differential equation :

$$x^{2}\frac{d^{2}y}{dx^{2}}+4x\frac{dy}{dx}+2y=e^{x}?$$

- (A) xe^x
- (B) x^2e^x
- (C) $\frac{1}{x}e^x$
- (D) $\frac{1}{x^2}e^x$

34. What is the singular solution of the differential equation $p^2 + y^2 = 1$?

- (A) y = 1, y = -1
- (B) y = 1, y = 2
- (C) y = 0, y = -1
- (D) None of the above

35. What is the solution of the differential equation $y = 2px + y^2p^3$?

(A)
$$y^2 = cx^2 + \frac{1}{8}c^3$$

$$(B) \quad y = cx + \frac{1}{8}c^3$$

(C)
$$y^2 = cx + \frac{1}{8}c^3$$

(D)
$$y = cx^2 + \frac{1}{8}c^3$$

36. If $A = \begin{bmatrix} 1 & k & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, then the value of k so that $A^2 - 4A - 5I = 0$ is :

- (A) 1
- (B) 2
- (C) zero
- (D) -1

- 37. If A = B + iC, where A is Hermitian and B is real symmetric, then what is C?
 - (A) real, symmetric
 - (B) real, skew-symmetric
 - (C) imaginary, symmetric
 - (D) None of the above
- 38. If $A = \begin{bmatrix} 0 & 2+3i \\ -2-3i & 0 \end{bmatrix}$, then A is :
 - (A) skew Hermitian
 - (B) symmetric
 - (C) skew-symmetric
 - (D) None of the above
- 39. The rank of the matrix of order 4 × 5 whose every element is unity is :
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4
- 40. If A and B are two square matrices of order n (each), then Rank (AB) = k, where:
 - (A) $k \ge \text{Rank A} + \text{Rank B} + n$
 - (B) $k \ge \text{Rank} + \text{Rank } B n$
 - (C) $k \ge \text{Rank} \text{Rank B} n$
 - (D) None of the above
- 41. What is the sum of the characteristic roots of the matrix $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$
 - (A) 7
 - (B) 6
 - (C) 5
 - (D) 4

Stat.

- 42. If A is a square matrix of order 7 with rank 5, then the number of linearly independent solutions of the equation AX = 0 is:
 - (A) 2
 - (B) 5
 - (C) 7
 - (D) 12
- 43. If the sum of any two roots of the equation $x^3 px^2 + qx r = 0$ is zero; then:
 - (A) pr = q
 - (B) pq = r
 - (C) qr = p
 - (D) pqr = 1
- 44. What are the roots of the reciprocal equation ?

$$x^4 - 10x^3 + 10x^2 - 10x + 1 = 0$$

- (A) $3 \pm 2\sqrt{2}, 2 \pm \sqrt{5}$
- (B) $3 \pm 2\sqrt{2}, 2 \pm \sqrt{3}$
- (C) $3 \pm \sqrt{2}, 2 \pm \sqrt{3}$
- (D) None of the above
- 45. If α , β and γ are the roots of the equation $x^3 px^2 + qx r = 0$, then the value of $\sum \frac{1}{\alpha^2 \beta^2}$ is :
 - (A) $\frac{p^2-2q}{r^2}$
 - (B) $\frac{p^2 + 2q}{r^2}$
 - (C) $\frac{q^2 2p}{r^2}$
 - (D) None of the above

46. To remove the second term of the cubic $x^3 - 12x^2 - 6x - 10 = 0$, the roots are to be diminished by:

10

- (A) -2
- (B) 2
- (C) -4
- (D) 4
- 47. What is the supremum of the set:

$$\left\{-1,\frac{-1}{2},\frac{-1}{3},\frac{-1}{4},\ldots\right\}$$
?

- -(A) 1
 - (B) = 0
- (C) 1
- (D) None of the above
- 48. Which of the following is not true for the real numbers x and y?
 - (A) $|x + y| \le |x| + |y|$
 - (B) $|x-y| \ge ||x|-|y||$
 - (C) $|x y| \le |x| |y|$
 - (D) None of the above
- 49. Which of the following is both closed and open ?
 - (A) the set of real numbers R
 - (B) the set of rational numbers Q
 - (C) $\{x: 0 < x < 1, x \in \mathbb{R}\}$
 - (D) None of the above
- 50. If $\{a_n\}$ converges and $\{b_n\}$ diverges, then $\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right)$ equals :
 - (A) 00
 - (B) 1
 - (C) = 0
 - (D) 1

51.	What	is	the	value	of	lim	$\log x $?
						Y what		

- (A) ∞
- (B) 0
- (C) 1
- $(D) \infty$

52. The function
$$f(x) = |x| + |x - 1|$$
 is derivable at:

- (A) = 0
- (B) 1
- (C) 2
- (D) None of the above

53. If f(x) is bounded and integrable on [a, b], then which of the following is not true?

- (A) |f(x)| is bounded on [a, b]
- (B) |f(x)| is integrable on [a, b]
- (C) $|f(x)|^2$ is integrable on [a, b]
- (D) None of the above

54. If
$$f(x, y) = \sqrt{|xy|}$$
, then $f_x(0, 0)$ equals :

- (A) -1
- (B) 0
- (C) 1
- (D) 2

55. What is the inverse of an element
$$a$$
 in the set R of real numbers with the binary operation * defined by $a * b = a + b + ab$?

27

(A)
$$\frac{a}{a+1}$$

(B)
$$\frac{-a}{a+1}$$

(C)
$$\frac{a}{a-1}$$

(D) None of the above

56.	What is the order of the alternating group \mathbf{A}_5 of all even permutations of degree 5 ?						
	(A)	5					
	(B)	15					
	(C)	30					
	(D)	60					
57.	What is the number of subgroups of order 3 in a group of order 6?						
	(A)	at most one					
	(B)	at least two					
	(C)	four					
	(D)	five					
58.	Which of the following groups is non-abelian?						
	(A)	group of order 3					
	(B)	group of order 4					
	(C)	group of order 5					
	(D)	none of the above					
59.	Which of the following cannot be the characteristic of an integral domain?						
	(A)	0					
	(B)	2					
	(C)	3					
	(D)	4					
60.	If W_1 and W_2 are subspaces of a vector space $V(F),$ then $L(W_1 \cup W_2)$ equals :						
	(A)	$W_1 + W_2$					
	(B)	$\mathbf{W}_1 - \mathbf{W}_2$					
	(C)	$\mathbf{W_1}$					
	(D)	W_2					
Stat.		28					