WARNING:

Any malpractice or any attempt to commit any kind of malpractice in

the Examination will DISQUALIFY THE CANDIDATE.

PAPER - I CHEMISTRY & PHYSICS

Version Code	A 1	Question Booklet Serial Number	
Time: 150 Minutes	la	Number of Questions : 120	Maximum Marks : 480
Name of Candidate		1	
Roll Number		ducation	1
Signature of Candi	date		

INSTRUCTIONS TO THE CANDIDATE

- Please ensure that the VERSION CODE shown at the top of this Question Booklet is the same as that shown in the OMR Answer Sheet issued to you. If you have received a Question Booklet with a different VERSION CODE, please get it replaced with a Question Booklet with the same VERSION CODE as that of the OMR Answer Sheet from the Invigilator. THIS IS VERY IMPORTANT.
- 2. Please fill in the items such as name, signature and roll number of the candidate in the columns given above. Please also write the Question Booklet Sl. No. given at the top of this page against item 4 in the OMR Answer Sheet.
- Please read the instructions given in the OMR Answer Sheet for marking answers. Candidates are advised to strictly follow the instructions contained in the OMR Answer Sheet.
- 4. This Question Booklet contains 120 Questions. For each Question, five answers are suggested and given against (A), (B), (C), (D) and (E) of which, only one will be the **Most Appropriate Answer**. Mark the bubble containing the letter corresponding to the 'Most Appropriate Answer' in the OMR Answer Sheet, by using either **Blue or Black ball point pen only.**
- 5. Negative Marking: In order to discourage wild guessing, the score will be subject to penalization formula based on the number of right answers actually marked and the number of wrong answers marked. Each correct answer will be awarded FOUR marks. One mark will be deducted for each incorrect answer. More than one answer marked against a question will be deemed as incorrect answer and will be negatively marked.

IMMEDIATELY AFTER OPENING THIS QUESTION BOOKLET, THE CANDIDATE SHOULD VERIFY WHETHER THE QUESTION BOOKLET ISSUED CONTAINS ALL THE 120 QUESTIONS IN SERIAL ORDER. IF NOT, REQUEST FOR REPLACEMENT.

DO NOT OPEN THE SEAL UNTIL THE INVIGILATOR ASKS YOU TO DO SO.

Mathrubhumi Education

BLANK PAGE

Mathrubhumi Education

PLEASE ENSURE THAT THIS BOOKLET CONTAINS 120 QUESTIONS SERIALLY NUMBERED FROM 1 TO 120 (Printed Pages: 32)

		(Space for rough work)					
	(D) trigonal planar	(E) linear					
	(A) tetrahedral	(B) pyramidal	(C) squ	uare planar			
5.	The molecular geometry of BF ₃ is						
	(A) C_2 (B) N_2	(C) B ₂	(D) O ₂	(E) F ₂			
٦.		11. + (4					
4.	The molecule which ha	s the highest bond order is					
	(A) 2 (B) 3	(C) 1	(D) 4	(E) 6			
3.		ant figures in 10.3106 g is	(T)				
		(-)					
	(D) Brackett series	(E) Pfund series					
	(A) Lyman series	(B) Balmer series	(C) Pas	schen series			
	belongs to						
2.	In hydrogen atomic sp	pectrum, a series limit is	found at 1218	6.3 cm ⁻¹ . Then it			
	(A) 2:5 (B) 3:4	(C) 6:4	(D) 4:3	(E) 5:2			
	wavelengths associated	with the particles A and B	is				
	of particle B is five	times that of particle A	, then the rat	io of de Broglie			
1.	The velocity of particle	A is 0.1 ms and that of pa	article B is 0.03	ms . If the mass			

Chem-Phy-09-A1

6.	The types of hybridisation or	the five carbon	n atoms from le	ft to right in the
	molecule CH ₃ -CH=C=CH-CH			
	(A) sp ³ , sp ² , sp ² , sp ² , sp ³ (I (D) sp ³ , sp ² , sp, sp ³ (I	3) sp^3 , sp , sp^2 , sp		sp^2 , sp , sp^2 , sp^3
7.	Which of the following compa	risons of the aver	rage kinetic energ	w and the average
7.				y and the average
	molecular speeds of H ₂ and N ₂			
	Average Kinetic Energy	Average Mole	ecular Speed	
	$(A) H_2 = N_2$	$\mathbf{H}_2 = \mathbf{N}_2$		
	(B) $H_2 < N_2$	$H_2 > N_2$		
	(C) $H_2 = N_2$	$H_2 < N_2$		
	(D) $H_2 > N_2$	$H_2 = N_2$		
	(E) $H_2 = N_2$	$H_2 > N_2$		
8.	The number of atoms per unit c			(T) 0
	(A) 1 (B) 2	(C) 4	(D) 6	(E) 8
9.	Which one of the following for	ms a molecular s	olid when solidifi	ed?
	Tarana articles			
		B) Calcium fluor	ride (C) Ro	ck sait
	(D) Silica (1	E) Methane		
10.	Which one of the following	does not react	with water eve	en under red hot
	condition?			, and rot
	(A) Na (B) Be	(C) Ca	(D) K	(E) Sr
	(Spa	ce for rough work		

11.	would you place this element if discovered?						
	(A) Alkali met	als	(B) Alkali	ne earth metal	s	(C) Halogens	
	(D) Noble gas	es	(E) Coinag	ge metals			
10		4 6 11 '					
12.		the following	statements i	s incorrect w	ith regard	d to ortho and para-	
	dihydrogen?						
	(A) They are r	uclear spin is	somers				
	(B) The ortho isomer has zero nuclear spin whereas the para isomer has one nuclear spin						
	(C) The para i	somer is favo	ured at low t	emperatures			
	(D) The thermal conductivity of the para isomer is 50% greater than that of the ortho isomer						
	(E) It is never	possible to o	btain 100 % j	pure ortho iso	mer		
13.	Which one of t	he following	metals forms	super oxide?			
	(A) Ca	(B) Zn	(C) Al	(D) Ti	(E) K	
14.	Which one of t	he following	ores is conce	entrated by che	emical lea	aching method?	
	(A) Galena		(B) Coppe	r pyrite	(C) (Cinnabar	
	(D) Argentite		(E) Coppe	er glance			
15.	Autoreduction	is employed	in the metallu	urgy of			
	(A) Hg	(B) Al	(C) T	Γi (D) Zn	(E) Cr	
			Space for roug	gh work)			

5

16.	The main reason that $SiCl_4$ is easily hydrolyzed as compared to CCl_4 is that							
	(A) Si - Si bo	nd is weaker	(B) SiCl ₄ ca	an form hydrogen	bonds			
	(C) SiCl ₄ is o	covalent	(D) SiCl ₄ is	sionic				
	(E) Si can ext	end its coording	nation number beyon	nd four				
17.	The number o	f carbon atoms	in Buckminsterfull	lerene is				
	(A) 50	(B) 350	(C) 60	(D) 70	(E) 80			
18.	The anion, (S	$i_6O_{18})^{12-}$ is pre	sent in					
	(A) Pyroxene	(B) Beryl	(C) Mica	(D) Albite	(E) Asbesto	S		
19.	The solid prod	duct formed on	heating AgNO ₃ str	ongly to 980 K is				
	 (A) Silver carbonate (B) Silver nitride (C) Silver oxide (D) Silver metal (E) Silver nitrite 							
20.	The maximur	n oxidation sta	te shown by Mn in	its compounds is				
	(A) +4	(B) +5	(C) +6	(D) $+7$	(E) +8			
21.	The approxin	nate percentage	e of iron in mischme	etall is				
	(A) 10	(B) 20	(C) 50	(D) 95	(E) 5			
	(Space for rough work)							

44.	One grain of Au_{79} ($t_{1/2} = 0.5$ lins) decays by p-enhission to produce stable increary.						
	The amount o	f mercury that w	ould be presen	t after 260 hours is			
	(A) 0.8745 g		(B) 0.9375 g	(C) 1.23	34 g		
	(D) 0.5849 g		(E) 0.0625 g				
23.	Critical mass	of ²³⁵ U ₉₂ in nuc	lear fission is				
	(A) 1 to 100	g	(B) 100 to 100	00 mg (C) 1 to	100 kg		
	(D) 1 to 100	amu	(E) 1 to 10 tor				
24.	The neutron t	o proton ratio of	f the daughter e	lement after a nuclide	e ²³⁸ U ₉₂ loses an		
	alpha particle	and a beta partic	cle successively	is is			
	(A) 144/90	(B) 143/91	(C) 144/91	(D) 234/91	(E) 145/90		
25.	A reaction ca	nnot take place s	spontaneously a	t any temperature wh	en		
	(A) both ΔH	and ΔS are posit	tive				
	(B) both ΔH	and ΔS are nega	ative				
	(C) ΔH is ne	gative and ΔS is	positive				
	(D) ΔH is ze	ro and ΔS is pos	itive				
	(E) ΔH is po	sitive and ΔS is	negative				
26.	The heats of	atomization of P	H ₃ (g) and P ₂ H ₄	(g) are 954 kJ mol ⁻¹ a	and 1485 kJ mol		
	respectively.	The P-P bond er	nergy in kJ mol	⁻¹ is			
	(A) 213	(B) 426	(C) 318	(D) 1272	(E) 107		
		(S	pace for rough w	vork)	1		

27.	Pick	out	the	wrong	statemer	nt
41.	PICK	Out	uie	WIOHE	Statemen	н

- (A) The standard free energy of formation of all elements is zero
- (B) A process accompanied by decrease in entropy is spontaneous under certain conditions
- (C) The entropy of a perfectly crystalline substance at absolute zero is zero
- (D) A process that leads to increase in free energy will be spontaneous
- (E) Enthalpy of combustion is always negative

28. Which one of the following has a pH value of 10.5?

- (A) Lemon juice
- (B) Blood
- (C) Milk

- (D) Soft drink
- (E) Lime water

29. For the equilibrium, $H_2 + I_2 \rightleftharpoons 2$ HI, which of the following will affect the equilibrium constant?

- (A) Pressure change
- (B) Concentration change (C) Catalyst
- (D) Promoter
- (E) Temperature change

30. The precipitate of $Ag_2CrO_4(K_{sp} = 9 \times 10^{-12})$ is obtained when equal volumes of the following are mixed

- (A) 10^{-5} M Ag⁺ and 10^{-3} M CrO₄²⁻
- (B) 10^{-5}M Ag^+ and $10^{-2} \text{M CrO}_4^{2-}$
- (C) 10^{-4} M Ag⁺ and 10^{-2} M CrO₄²⁻
- (D) 10^{-7} M Ag⁺ and 10^{-3} M CrO₄²
- (E) 10^{-4} M Ag⁺ and 10^{-4} M CrO₄²⁻

(Space for rough work)

Chem-Phy-09-A1

8

At 300 K the vapour pressure of an ideal solution containing 1 mole of liquid A
and 2 moles of liquid B is 500 mm of Hg. The vapour pressure of the solution
increases by 25 mm of Hg, if one more mole of B is added to the above ideal
solution at 300 K. Then the vapour pressure of A in its pure state is
(A) 300 mm of Hg (B) 400 mm of Hg (C) 500 mm of Hg
(D) 600 mm of Hg (E) 200 mm of Hg
Education
Which of the following concentration terms is/are independent of temperature?
(A) Molality only
(B) Molality and mole fraction
(C) Molarity and mole fraction
(D) Molality and normality
(E) Molarity only
Henry's law constant of oxygen is $1.4 \times 10^{-3} \text{ mol.lit}^{-1}$.atm ⁻¹ at 298 K. How much
of oxygen is dissolved in 100 mL at 298 K when the partial pressure of oxygen is
0.5 atm?
(A) 1.4 g (B) 3.2 g (C) 22.4 mg (D) 2.24 mg (E) 3.2 mg.
A solution of nickel sulphate in which nickel rod is dipped is diluted 10 times. The
reduction potential of Ni at 298 K
(A) decreases by 60 mV (B) decreases by 30 mV (C) decreases by 30 V
(D) increases by 30 mV (E) increases by 30 V
(Space for rough work)

35.	The standard reduction potentials for Cu^{2+} / Cu ; Zn^{2+} / Zn ; Li^+ / Li ; Ag^+ / Ag and H^+ / H_2 are + 0.34 V, -0.762 V, -3.05 V, +0.80 V and 0.00 V respectively. Choose the strongest reducing agent among the following						
	(A) Zn	(B) H ₂	(C) Ag	(D) Li	(E) Cu		
36.	The number	of electrons in	volved in the reduc	tion of one nitrate ic	on to hydrazine is		
	(A) 8	(B) 5	(C) 3	(D) 7	(E) 4		
37.	For a first o		ne rate constant is	6.909 min^{-1} . The tin	me taken for 75%		
	(A) 3/2 log	2	(B) 2/3 log 3	(C) 2/3	C) 2/3 log 2		
	(D) 3/2 log	3/4	(E) $2/3 \log 4/3$				
38.	The unit, mo	ol L^{-1} s ⁻¹ is mean	ant for the rate cons	stant of the reaction	having the order		
	(A) 0	(B) 2	(C) 1	(D) 3	(E) 4		
39.			n is inversely prop nt. Then the order of	portional to the squ	uare of the initial		
	(A) 0	(B) 1	1 (C) 2 (D) 3				
40.	The gas whi	ch is least adso	rbed on charcoal (u	under identical cond	litions) is		
	(A) HCl	(B) O ₂	(C) CO ₂	(D) NH ₃	(E) SO ₂		
			(C	11			

41.			in the preparation of	of acrylonitrile	from propylene,	
	ammonia and	oxygen is				
	(A) silver		bismuth molybdates		sium chloride	
	(D) nickel	(E)	organochromium com	pounds		
42.	Hair cream is	an example of	$_{\rm f}$			
	(A) Gel	(B) Sol	(C) Aerosol	(D) Foam	(E) Emulsion	
43.	The crystal fi	eld splitting er	nergy for octahedral (A	Δ_0) and tetrahed	ral (Δ_t) complexes	
	is related as					
	(A) $\Delta_t = -\frac{1}{2}$	$\frac{1}{2}\Delta_0$	(B) $\Delta_t = -\frac{4}{9} \Delta_0$	(C) Δ_t	$=-\frac{3}{5} \Delta_0$	
	(D) $\Delta_t = -\frac{2}{5}$	Δ_0	(E) $\Delta_t = -\frac{9}{4} \Delta_0$			
44.	The charge o	n the central m	netal ion in the comple	ex [Ni(CO) ₄] is		
	(A) +2	(B) +4	(C) 0	(D) +3	(E) +1	
45.	Facial and m	eridional isom	erism will be exhibited	d by		
	(A) [Co(NH ₃	3) ₃ Cl ₃]	(B) [Co(NH ₃) ₄ Cl ₂](C1 (C) [Co(en) ₃]Cl ₃	
	(D) [Co(NH ₃) ₅ Cl]Cl ₂	(E) $K_3[Co(CN)_4Cl_2$]		
46.	The masses of carbon, hydrogen and oxygen in an organic compound are in the ratio 6:1:8 respectively. Which of the following pairs of formulas correspond to above information?					
		nd CH ₃ CHO	(B) CH ₂ O and C ₃ H		₃ H ₆ O and C ₂ H ₆ O ₂	
	(D) $C_3H_6O_3$	and HCHO	(E) C_2H_4O and C_4	H ₈ O ₂		
			(Space for rough work)			

47.	In the Dumas method of estimation of nitrogen, the nitrogen in the organic compound is finally converted into
	(A) NO_2 (B) N_2 (C) NH_3 (D) $(NH_4)_2SO_4$ (E) HNO_3
48.	The number of primary, secondary and tertiary carbons in 3,4-dimethylheptane are respectively
	(A) 4, 3 and 2 (B) 2, 3 and 4 (C) 4, 2 and 3 (D) 3, 4 and 2 (E) 3, 3 and 3
49.	Which among the following will not exhibit geometrical isomerism?
	(A) 2-methyl-2-butene (B) 2-butene (C) 2, 3-dichloro-2-butene (D) 1-chloro-1-pentene (E) 1, 2-dichloroethene
50.	Which of the following is a 3-methylbutyl group?
	(A) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ — (B) (CH ₃ CH ₂) ₂ CH— (C) (CH ₃) ₃ CCH ₂ — (D) (CH ₃) ₂ CHCH ₂ CH ₂ — (E) CH ₃ CH ₂ CH(CH ₃)CH ₂ —
51.	When neopentyl bromide is subjected to Wurtz reaction, the product formed is
	(A) 2, 2, 4, 4-tetramethylhexane
	(B) 2, 2, 4, 4-tetramethylpentane
	(C) 2, 2, 5, 5-tetramethylhexane
	(D) 2, 2, 3, 3-tetramethylhexane
offt mi	(E) 2, 2, 3, 3-tetramethylpentane

Chem_Phy_00_A1

- **52.** Which among the following groups when attached to benzene ring will direct the incoming electrophile predominantly to the meta position
 - (1) –CH₃
- (2) –CH₂C1
- $(3) NH_3$
- (4) –CCl₃
- (5) –NHCOCH₃

- (A) 3 only
- (B) 1, 2 and 5
- (C) 3 and 5 only

- (D) 3, 4 and 5
- (E) 3 and 4 only
- 53. An example of electrophile is
 - (A) NO₂
- (B) NH₃
- (C) $^{\dagger}NO_2$
- (D) H₂O
- (E) OH
- 54. Which among the following free radical is most stable?

- (B) CH
- (C) CH₃
- $(D)\dot{C}H_2$ $\wedge CH_2$
- (E)HC=CH,

- 55. Diastereomerism will not be exhibited by
 - (A) 2, 3-dichlorobutane
- (B) 2-hydroxy propanoic acid
- (C) tartaric acid
- (D) 2, 3-butane diol
- (E) threonine
- 56. The molecule which is free from angular strain is
 - (A) cyclopropane
- (B) cyclobutane(E) cycloheptane
- (C) cyclopentane

(D) cyclohexane

(Space for rough work)

Chem-Phy-09-A1

13

57.	The number of chain isomers possible for the hydrocarbon C_5H_{12} is						
	(A) 1 (B) 2	h K	C) 3	(D) 4	4	(E)	5
58.	Which one of the follow	wing gives	only one mon	ochloro d	erivative?		
	(A) n-hexane	(B)	2-methylpent	tane	(C) 2, 3-d	imethy	lpentane
	(D) 3-methylpentane	(E)	neopentane				
59.	Treatment of calcium c	arbide with	water gives				
	(A) ethene (B) eth	nyne (C) ethane	(D)	benzene	(E)	methane
60.	The major product of t	he reaction	between tert	-butyl chl	oride and s	odium	ethoxide
	is						
	(A) 2-Methylprop-1-en	ne (B)	1-Butene		(C) 2-But	ene	
	(D) Ethene	(E)	2-Ethoxy-2-1	methylpro	pane		
61.	Which among the follo	wing does	not answer io	doform te	est?		
	(A) 1-Propanol	(B)	Ethanol		(C) 2-Pro	panol	
	(D) Ethanal	(E)	Propanone				
62.	Chlorination of toluene	e in the pre	sence of light	and heat	followed b	y treat	ment with
	aqueous KOH gives						
	(A) o-cresol	(B)	m-cresol		(C) p-cre	esol	
	(D) benzyl alcohol	(E)	2-chloro-4-h	ydroxyto	luene		

63.	The best combination of reagents for carrying out the conversion $RCH_2CH_2OH \rightarrow RCH_2CH_2COOH$ is						
	(A) PBr ₃ , KCN, H ₃ O ⁺ (D) PBr ₃ , H ₃ O ⁺	(B) PBr₃, KCN, H₂/Pt(E) LiAlH₄, PBr₃	(C) KCN, H ₃ O ⁺				
64.	Nitrobenzene is reduced to azoxybenzene using						
	(A) Sn/HCl	(B) Zn/NH ₄ Cl	(C) As ₂ O ₃ /NaOH				
	(D) Zn/NaOH	(E) H ₂ /Pd-C/C ₂ H ₅ OH					
65.	Benzenediazonium chloride on treatment with water gives						
	(A) benzene	(B) o-chlorophenol	(C) anisole				
	(D) chlorobenzene	(E) phenol					
66.	A primary amine that can be obtained both by the reduction of cyanides and amides						
	is						
	(A) methylamine	(B) benzylamine	(C) aniline				
	(D) isopropylamine	(E) tertiary butylamine					
67.	The monomer(s) used to pre-	The monomer(s) used to prepare polyvinyl polythene is					
	(A) vinyl chloride and ethene(B) ethene						
	(C) isoprene						
	(D) 1, 3-butadiene and acrylonitrile						
	(E) 1, 3-butadiene						
	(Space for rough work)						

15

68. A peptide hormone is (C) insulin (A) estrone (B) testosterone (D) corticoid (E) progesterone The polymer used in orthopaedic devices and in controlled drug release is 69. (D) PHBV (E) PVC (A) Orlon (B) PTFE (C) SBR 70. The greenhouse gas is (E) N₂O(A) CO₂(B) SO₂ $(C) N_2$ (D) H_2S 71. A dye that imparts different colours to the fabric with different metal ions is called (A) mordant dye (B) disperse dye (C) vat dye (D) direct dye (E) acid dye 72. Photochemical smog is due to the presence of

(Space for rough work)

(B) oxides of nitrogen

(E) chlorofluorocarbons

(C) oxides of carbon

Mathrubhumi Education

Chem-Phy-09-A1

(A) oxides of sulphur

(D) lead

73. Which one of the following quantities has not been expressed in proper unit?

(A) torque

newton metre

(B) stress

newton metre⁻²

(C) modulus of elasticity

newton metre⁻²

(D) power

newton metre second-1

(E) surface tension

newton metre⁻²

74. Area under velocity-time curve over a given interval of time represents

- (A) acceleration
- (B) momentum
- (C) velocity

- (D) displacement
- (E) kinetic energy

75. A car starts from rest and accelerates uniformly to a speed of 180 kmh⁻¹ in 10 seconds. The distance covered by the car in this time interval is

- (A) 500 m
- (B) 250 m
- (C) 100 m
- (D) 200 m
- (E) 150 m

76. The relation between the time of flight of a projectile T_f and the time to reach the maximum height t_m is

- (A) $T_f = 2t_m$
- (B) $T_f = t_n$
- (C) $T_f = \frac{t_m}{2}$

- (D) $T_f = \sqrt{2} \left(t_m \right)$
- (E) $T_f = \frac{t_m}{\sqrt{2}}$

(Space for rough work)

Education

Chem-Phy-09-A1

17

- 77. The acceleration of an object moving with speed v in a circle of radius r is

 - (A) $\frac{v^2}{r}$ towards the centre (B) $\frac{v}{r}$ away from the centre
 - (C) $\frac{v}{r^2}$ away from the centre (D) $\frac{r}{v^2}$ towards the centre
 - (E) $\frac{v}{r}$ towards the centre
- **78.** Newton's second and third laws of motion lead to the conservation of
 - (A) linear momentum
- (B) angular momentum
- (C) potential energy

- (D) kinetic energy
- (E) force
- **79**. A large force is acting on a body for a short time. The impulse imparted is equal to the change in
 - (A) acceleration
- (B) momentum
- (C) energy

- (D) velocity
- (E) displacement

- 80. The 'kilowatt-hour' is the unit of
 - (A) time
- (B) power
- (C) energy
- (D) force
- (E) impulse
- 81. According to work-energy theorem, the work done by the net force on a particle is equal to the change in its
 - (A) kinetic energy
- (B) potential energy
- (C) linear momentum

- (D) angular momentum
- (E) acceleration
- 82. A particle with position vector r has a linear momentum p. Which of the following statements is true in respect of its angular momentum L about the origin?
 - (A) Lacts along p
 - (B) L acts along r
 - (C) L is maximum when p and r are parallel
 - (D) L is maximum when p is perpendicular to r
 - (E) L is minimum when p is perpendicular to r

Mathrubhumi Education

Chem-Phy-09-A1

19

- 83. The moment of inertia of a circular disc of mass M and radius R about an axis passing through the center of mass is I₀. The moment of inertia of another circular disc of same mass and thickness but half the density about the same axis is
- (B) $\frac{I_0}{4}$ (C) $8I_0$ (D) $2I_0$ (E) $4I_0$

- The escape velocity for an object from the surface of earth (radius R) is 84.
 - (A) \sqrt{gR}
- (B) gR
- (C) $\sqrt{gR^2}$ (D) $\sqrt{2gR}$ (E) $\sqrt{2gR^2}$
- The energy required to move a satellite of mass 'm' from an orbit of radius 2R to 85. 3R around earth of mass M is

- (A) $\frac{GMm}{12R}$ (B) $\frac{GMm}{R}$ (C) $\frac{GMm}{8R}$ (D) $\frac{GMm}{2R}$ (E) $\frac{GMm}{3R}$
- The Young's modulus of the material of a wire is equal to the 86.
 - (A) stress required to increase its length four times
 - (B) stress required to produce unit strain
 - (C) strain produced in it
 - (D) half the strain produced in it
 - (E) stress acting on it

- 87. The working of venturimeter is based on

 (A) Torricelli's law
 (B) Pascal's law
 (C) Bernoulli's theorem
 (D) Archimedes' principle
 (E) Stokes's law
- 88. Excess of pressure in a gas bubble of radius r in a liquid is (liquid-gas interface surface tension is S)
 - (A) $\frac{4S}{r}$ (B) $\frac{S}{r}$ (C) $\frac{3S}{r}$ (D) $\frac{2S}{r}$ (E) $\frac{S}{2r}$
- **89.** No heat flows between the system and surrounding. Then the thermodynamic process is
- (A) isothermal (B) isochoric (C) adiabatic (D) isobaric (E) cyclic
- 90. The temperature of a radiating body increases by 30%. Then, the increase in the amount of radiation emitted will be approximately
 - (A) 185% (B) 285% (C) 325% (D) 245%

(Change for rough work)

Mathrubhumi Education

Chem-Phy-09-A1

21

[P.T.O.

(E) 130%

	(A) level in B decreases	(B) will overflow in A only			
	(C) will overflow in B only	(D) level in A decreases			
	(E) will overflow in both A an	d B			
92.	If a body oscillates at the angular frequency ω_d of the driving force, then the				
	oscillations are called				
		B) coupled oscillations			
		D) maintained oscillations			
	(E) damped oscillations	b) mamamod osomations			
	(E) dumped coemations				
93.	If the length of a seconds pendulum is increased by 2%, then in a day the pendulum				
			(C) gains 236 s		
		E) gains 346 s	(0) Build 22 0		
	(2) 10000 00.0	—) B			
94.	If the phase difference between two sound waves of wavelength λ is 60° , the corresponding path difference is				
74.					
		15	6		
	(A) $\frac{\lambda}{6}$ (B) $\frac{\lambda}{2}$	(C) 2λ (D) $\frac{\lambda}{4}$	(E) $\frac{6}{\lambda}$		
(Space for rough work)					
	(Space for rough work)				

Two beakers A and B are filled to the brim with water at 4°C. When A is heated

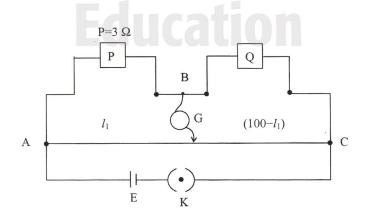
and B is cooled, the water

Chem-Phy-09-A1

91.

- 95. A sonometer wire supports a 4 kg load and vibrates in fundamental mode with a tuning fork of frequency 416 Hz. The length of the wire between the bridges is now doubled. In order to maintain fundamental mode, the load should be changed to
 - (A) 1 kg (B) 2 kg (C) 4 kg (D) 8 kg (E) 16
- 96. The total electric flux through a cube when a charge '8q' is placed at one corner of the cube is
 - $\text{(A) } \varepsilon_0 q \qquad \text{(B) } \frac{\varepsilon_0}{q} \qquad \text{(C) } 4\pi \varepsilon_0 q \qquad \text{(D) } \frac{q}{4\pi \varepsilon_0} \qquad \text{(E) } \frac{q}{\varepsilon_0}$
- 97. An uniform electric field E exists along positive x-axis. The work done in moving a charge 0.5 C through a distance 2 m along a direction making an angle 60° with x-axis is 10 J. Then the magnitude of electric field is
 - (A) 5 Vm^{-1} (B) 2 Vm^{-1} (C) $\sqrt{5} \text{ Vm}^{-1}$ (D) 40 Vm^{-1} (E) 20 Vm^{-1}

Mathrubhumi Education


Chem-Phy-09-A1

23

- 98. A capacitor of capacitance C is charged to a potential V. If it carries a charge Q, then the energy stored in it is
 - (A) $\frac{1}{2}$ CV
- (B) QV
- (C) $\frac{1}{2}$ QV²
- (D) CV²
- (E) $\frac{1}{2}$ QV
- 99. In a thermocouple, which of the following statements is not true?
 - (A) Neutral temperature depends upon the nature of materials in the thermocouple
 - (B) Temperature of inversion depends upon the temperature of cold junction
 - (C) When the temperature of the hot junction is equal to the temperature of inversion, the thermo emf becomes zero
 - (D) When the temperature of cold junction increases, the temperature of inversion also increases
 - (E) When the temperature of hot junction increases beyond the temperature of inversion the thermo emf increases in the opposite direction

Mathrubhumi Education

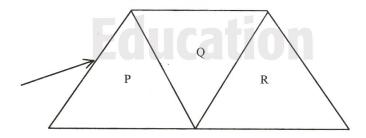
100. In a metre bridge experiment, resistances are connected as shown in figure. The balancing length l_1 is 55 cm. Now an unknown resistance x is connected in series with P and the new balancing length is found to be 75 cm. The value of x is

- (A) $\frac{54}{13}\Omega$
- (B) $\frac{20}{11}\Omega$ (C) $\frac{48}{11}\Omega$
- (D) $\frac{11}{48}\Omega$
- $(E) 5\Omega$

(Space for rough work)

- 101. An electric bulb rated 220 V, 100 W is connected in series with another bulb rated 220 V, 60 W. If the voltage across the combination is 220 V, the power consumed by the 100 W bulb will be about
 - (A) 25 W
- (B) 14 W
- (C) 60 W
- (D) 100 W
- (E) 80 W
- 102. The relative permeability of iron is 6000. Its magnetic susceptibility is
 - (A) 5999
- (B) 6001
- (C) 6000×10^{-7} (D) 6000×10^{7}
- (E) 60
- 103. A galvanometer can be converted into an ammeter by connecting
 - (A) a high resistance in parallel
 - (B) a very small resistance in series
 - (C) a very small resistance in parallel
 - (D) a high resistance in series
 - (E) a low resistance in series

- 104. The magnetic Lorentz force experienced by a charge q, entering a magnetic field B with a velocity ν is
 - (A) \sqrt{q} (B × ν)
- (B) q (B × v)
- (C) q (v . B)


- (D) q^2 ($v \times B$)
- (E) $q(v \times B)$
- 105. In a pure inductive a.c. circuit
 - (A) current leads the voltage by $\frac{\pi}{2}$
 - (B) current lags behind the voltage by $\frac{\pi}{2}$
 - (C) voltage lags behind the current by π
 - (D) current and voltage are in phase
 - (E) current lags behind the voltage by π
- 106. The power dissipated in an a.c. circuit is zero if the circuit is
 - (A) purely resistive
 - (B) purely inductive only
 - (C) either purely inductive or purely capacitive
 - (D) purely capacitive only
 - (E) LCR circuit

- 107. Eddy current loss in a transformer is reduced by
 - (A) having a laminated core
 - (B) using thick wires
 - (C) using material with low hysteresis loss
 - (D) winding primary and secondary coils one over the other
 - (E) using iron core
- The average electric field of electromagnetic waves in certain region of free space 108. is 9×10^{-4} NC⁻¹. Then the average magnetic field in the same region is of the order
 - (A) $27 \times 10^{-4} \text{ T}$

- (D) $3 \times 10^{12} \text{ T}$
- (B) $3 \times 10^{-12} \text{ T}$ (C) $\left(\frac{1}{3}\right) \times 10^{-12} \text{ T}$ (E) $\left(\frac{1}{3}\right) \times 10^{12} \text{ T}$
- 109. When sunlight is scattered by atmospheric atoms and molecules, the amount of scattering of light of wavelength 440 nm is A. The amount of scattering for the light of wavelength 660 nm is approximately
 - $(A)\frac{4}{9}A$
- (B) 2.25 A
- (C) 1.5 A
- (D) 0.66 A
- $(E)\frac{A}{5}$

110. A ray of light suffers minimum deviation in equilateral prism P. Additional prisms Q and R of identical shape and of same material as that of P are now combined as shown in figure. The ray will now suffer

- (A) greater deviation
- (B) no deviation
- (C) same deviation as before
- (D) total internal reflection
- (E) smaller deviation
- 111. In the measurement of the angle of a prism using a spectrometer, the readings of first reflected image are Vernier I: 320° 40′; Vernier II: 140° 30′ and those of the second reflected image are Vernier I: 80° 38′; Vernier II: 260° 24′. Then the angle of the prism is
 - (A) 59° 58′
- (C) $60^{\circ} 2'$

(B) 59° 56′

- (D) 60° 4′
- (E) $60^{\circ} 0'$

(Space for rough work)

Chem-Phy-09-A1

29

- 112. λ_e , λ_p and λ_α are the de Broglie wavelengths of electron, proton and α particle. If all are accelerated by same potential, then
 - (A) $\lambda_e < \lambda_p < \lambda_\alpha$
- (B) $\lambda_e < \lambda_p > \lambda_{\alpha}$
- (C) $\lambda_e > \lambda_p < \lambda_\alpha$

- (D) $\lambda_e = \lambda_p > \lambda_o$
- (E) $\lambda_e > \lambda_p > \lambda_\alpha$
- 113. The SI unit for activity of a radioactive substance is
 - (A) Curie
- (B) Becquerel
- (C) Roentgen
- (D) Fermi
- (E) Rutherford
- 114. Pick out the unmatched pair from the following
 - (A) Moderator Heavy water
 - (B) Nuclear fuel $-92U^{235}$
 - (C) Pressurized water reactor Water as the heat exchange system
 - (D) Safety rods Carbon
 - (E) Reactor is critical Multiplication factor is unity
- 115. In an NPN transistor, 108 electrons enter the emitter in 10⁻⁸s. If 1% electrons are lost in the base, the fraction of current that enters the collector and current amplification factor are respectively
 - (A) 0.8 and 49
- (B) 0.9 and 90
- (C) 0.7 and 50

- (D) 0.99 and 99
- (E) 0.88 and 88

116.	equivalent to					
	(A) XOR	(B) OR	(C) NOR			
	(D) NOT	(E) AND				
117.	7. The diode used as voltage regulator is					
	(A) photodiode	(B) light emitting diode	(C) Zener diode			
	(D) p-n junction diode	(E) laser diode				
118.	The modulation in which pulse duration varies in accordance with the modulating					
	signal is called					
	(A) PAM	(B) PPM	(C) PWM			
	(D) PCM	(E) PFM				
119.	The height of a geostationary	v satellite is				
	(A) 1000 km	(B) 32000 km	(C) 36000 km			
	(D) 850 km	(E) 38000 km	(C) 30000 km			
	(D) 630 Kill	(E) 38000 KIII				
120.	Which of the following has/have zero average value in a plane electromagnetic wave?					
(A) Both magnetic and electric fields						
	(B) Electric field only					
	(C) Magnetic field only					
	(D) Magnetic energy					
	(E) Electric energy					
(Space for rough work)						

Mathrubhumi Education

BLANK PAGE

Mathrubhumi Education

Chem-Phy-09-A1

32