	Total Pages : 2
Roll No	8914
	BT-5/D06
40	LINEAR IC APPLICATIONS
	PAPER - ECE-307E
	Opt. (ii)
Time : 3 H	rs. Maximum Marks : 100
Note: Att	empt any five questions. All questions carry equal
ma	irks.
1. a. W	hat is the difference between Constant Current Bias
	d Current Mirror ? Describe a current mirror source.
W	hen are such circuits employed r
b. G	ive the characteristics of an ideal operational amplifier.
W	hat is a practical OPAMP ? Give its equivalent circuit.
2. a. W	hy are FET OPAMP's better than BJT OPAMP' S?5
b. W	/hat is Cross over distortion & how is it eliminated ? 5
c. E	xplain the following OPAMP parameters :
) Input Bias Current
AV. 6 17.00	i) Output Offset voltage
	ii) Supply Voltage Rejection Ratio
100	iv) CMRR
	v) Sley/Rate
3 9 [Discuss the frequency response of Operational Amplifer.
· v	What causes the gain of OPAMP to roll-off after certain
· f	requency?
b. 1	What is the need of frequency Compensation? Describe
	he internal Compensation Technique.

(5th sem. Electronics)

4.	a.	an inverting amplifier and in what way is the vo	Itage r ?10
		the load is (i) floating and (ii) grounded. Is there	THE PERSON
5.	a.	What is the Instrumentation Amplifier? Draw a sy whose gain is controlled by an adjustable resistant	stem
			12
	b.	Name the circuit that is used to detect the peak value non-sinusoidal waveforms. Explain its operation.	ue of
6.	a.	Explain why integrators are preferred over different	ators
		in Analog Computer.	10
	b.	Discuss an application of operational amplifier in	open
В		loop configuration.	10
7.	a.	Design a phase shift oscillator with Fo = 1 KHz.	8
	b.	Describe the operation of monostable multivibrator	using
		the functional diagram of 555 timer.	12
8.		Write short notes on the following:	
	a.	IC - 741	
	b.	Level Translator Circuit	
	c.	PLL 6,	7, 7